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Introduction to Metal-Insulator
Transitions

1.1 Why study metal-insulator transitions?

The metal-insulator transition (MIT) is one of the oldest, yet one of the fundamentally
least understood problems in condensed matter physics. Materials which we under-
stand well include good insulators such as silicon and germanium, and good metals
such as silver and gold. Remarkably simple theories (Ashcroft and Mermin, 1976) have
been successful in describing these limiting situations: in both cases low temperature
dynamics can be well described through a dilute set of elementary excitations. Un-
fortunately, this simplicity comes at a price: the physical properties of such materials
are extremely stable. They prove to be very difficult to manipulate or modify in order
to the meet the needs modern technology, or simply to explore novel and interesting
phenomena.

Interactions:

Mott Transition

Disorder:
Anderson
Localization

Frustration:
Glassy
Freezing

Metal-Insulator Transition

Fig. 1.1 Three basic mechanism for electron localization.

The situation is more promising in more complicated materials, where relatively
few charge carriers are introduced in an otherwise insulating host. Several such systems
have been fabricated even years ago, and some have, in fact, served as basic building
blocks of modern information technology. The most familiar are, of course, the doped
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semiconductors which led to the discovery of the transistor. More recent efforts drifted
to structures of reduced dimensionality and devices such as silicon MOSFETs (metal-
oxide-semiconductor field-effect transistors), which can be found in any integrated
circuit.

Fig. 1.2 Quantum critical behavior near a metal-insulator transition. Temperature depen-

dence of the resistance for different carrier concentrations is shown schematically in (a).Well

defined metallic or insulating behavior is observed only at temperatures lower than a char-

acteristic temperature T < T ∗ that vanishes at the transition. At T < T ∗, the system is

in the “quantum critical region”, as shown in (b). As the system crosses over from metal

to insulator, the temperature dependence of the resistivity changes slope from positive to

negative.

1.1.1 Why is the MIT an important problem?

In contrast to elemental materials, in systems close to the MIT the physical properties
change dramatically with the variation of control parameters such as the carrier con-
centration, the temperature, or the external magnetic field. Such sensitivity to small
changes is, indeed, quite common in any material close to a phase transition. In doped
insulators this sensitivity follows from the vicinity to the metal-insulator transition.
The sharp critical behavior is seen here only at the lowest accessible temperatures, be-
cause a qualitative distinction between a metal and an insulator exists only at T = 0
(Fig. 1.2). Since the basic degrees of freedom controlling the electrical transport proper-
ties are electrons, and the transition is found at T = 0, quantum fluctuations dominate
the critical behavior. The metal-insulator transition should therefore be viewed as per-
haps the best example of a quantum critical point (QCP), a subject that has attracted
much of the physicist’s fancy and imagination in recent years (Sachdev, 2011). As near
other QCPs, one expects the qualitative behavior here to display a degree of univer-
sality, allowing an understanding based on simple yet fundamental physical pictures
and concepts. Before we understand the basic mechanisms and process that control
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this regime (Fig. 1.1) one can hardly hope to have control over material properties
even in very simple situations.

1.1.2 Why is the MIT a difficult problem?

From the theoretical point of view the problem at hand is extremely difficult for
reasons that are easy to guess. The two limits, that of a good metal and that of a
good insulator, are very different physical systems, which can be characterized by
very different elementary excitations. For metals, these are fermionic quasiparticles
corresponding to electrons excited above the Fermi sea. For insulators, in contrast,
these are long-lived bosonic (collective) excitations such as phonons and spin waves.
In the intermediate regime of the metal-insulator transition, both types of excitations
coexist, and simple theoretical tools prove of little help. Some of these conceptual
difficulties are a general feature of quantum critical points. For QCPs involving spin
or charge ordering, the critical behavior can be described by examining the order
parameter fluctuations associated with an appropriate symmetry breaking. In contrast,
the MIT is more appropriately described as a dynamical transition, and an obvious
order parameter theory is not available. For all these reasons, the intermediate regime
between the metal and the insulator has remained difficult to understand both from
the practical and the conceptual point of view.

1.1.3 Disorder and complexity

Fig. 1.3 In the last few years, fascinating examples of complex ordering around the metal-in-

sulator transition are starting to emerge, due to advances of both the experimental probes

and the theoretical tools available. Left panel: Percolative conduction in the half-metallic fer-

romagnetic and ferroelectric mixture (La, Sr)MnO3 (Park, Hur, Guha and Cheong, 2004) .

Central panel: Inhomogeneous charge distribution revealed by scanning tunneling microscope

(STM) spectroscopy (Kohsaka, Iwaya, Satow, Hanaguri, Azuma, Takano and Takagi, 2004)

on underdoped cuprateCa2−xNaxCuO2Cl2. Right panel: Strikingly similar “stripe glass” or-

dering is observed in a computer simulation of an appropriate model (Reichhardt, Reichhardt

and Bishop, 2005).

After more then sixty years of study, the subject of metal-insulator transitions
has become a very wide and complicated field of research. In many complex mate-
rials, particularly in transition metal oxides and other strongly correlated systems,
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the emergence of the metal-insulator transition is often accompanied by changes in
magnetic or structural symmetry. In many such cases the transition is dominated by
material-specific details, and it is often of first order, not a critical point. Somewhat
surprisingly, the situation is in fact simpler in presence of sufficient amounts of disor-
der, where the metal and the insulator have the same symmetries and the transition
is not associated with any uniform ordering. In such cases, strong evidence exists indi-
cating that the transition is a genuine quantum critical point of a fundamentally new
variety, with properties that most likely dominate the behavior of many materials.

At first glance disorder may be viewed simply as a nuisance and an inessential
complication. In recent years, though, fascinating new evidence is emerging (Fig. 1.3)
revealing that genuinely new phenomena (Miranda and Dobrosavljevic, 2005) arise
in presence of disorder and impurities. Put quite simply, a given configuration of im-
purities may locally favor one or another of several competing phases of matter. In
many instances this gives rise to strongly inhomogeneous states that feature an enor-
mous number of low-lying metastable states - giving rise to quantitatively new exci-
tation, slow relaxation, and glassy fluctuations and response. These phenomena often
dominates the observable properties in many systems, ranging from colossal magneto-
resistance (CMR) manganites and cuprates, to diluted magnetic semiconductors, and
even Kondo alloys. Even more surprisingly, recent work suggest that a plethora of
intermediate heterogenous phases may emerge between the metal and the insulator,
possibly even in absence of disorder. Such complexity emerges as a new paradigm
(Dagotto, 2005) of the metal-insulator transition region, most likely requiring a de-
scription in terms of probability distribution function functions (PDFs) rather then
simple minded order parameters.

1.1.4 MIT in the strong correlation era

The subject of MITs came to a renewed focus in the last two decades, following the
discovery of high temperature superconductivity, which triggered much activity in
the study of “bad metals” (for a recent perspective, see Ref. (Basov and Chubukov,
2011)) . Many of the materials in this family consist of transition metal or even rare
earth elements, corresponding to compounds which are essentially on the brink of
magnetism. Here, conventional approaches proved of little help, but recent research
has lead to a veritable avalanche of new and exciting ideas and techniques both on
the experimental and the theoretical front. In many ways, these developments have
changed our perspective on the general problem of the metal-insulator transition,
emphasizing the deep significance of the physics of strong correlation. A common
theme for all these systems seems to be the transmutation of conduction electrons
into localized magnetic moments (Anderson, 1978), a feature deeply connected to
the modification of the fundamental nature of elementary excitations as the metal-
insulator transition is crossed.

1.1.5 The scope of this overview

In this overview we will not discuss all the possible examples of metal-insulator tran-
sitions, but will focus on the basic physical mechanisms that can localize the electrons
in absence of magnetic or charge ordering, and produce well defined quantum critical
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behavior. Our emphasis will be on results providing evidence that strong correlation
physics dominates such quantum critical points, where physical pictures based on
weak-coupling approaches prove insufficient or even misleading.

1.2 Basic mechanisms of metal-insulator transitions

What determines whether a material is a metal or an insulator? In most cases the
answer is provided by simply examining the electronic band structure (Ashcroft and
Mermin, 1976) and the pattern of chemical bonding of a given compound. At present,
solid state physicists and quantum chemists have an impressive toolbox of theoretical
methods to determine the band structure with sometimes surprising accuracy. Quite
generally, one calculates all the accessible electronic levels (Slater, 1934) for the valence
electrons in a solid and populates them according to the Pauli principle. If the highest
occupied electronic state - the Fermi energy - is within a band gap, then the material is
an insulator, since it takes a finite (generally large) energy to excite the electron to the
lowest accessible state in order to carry electrical current. Otherwise, when electronic
bands are partially filled, then we expect metallic behavior.

1.2.1 Band transitions

Can one induce a metal-insulator transition within this band theory picture? This is
possible if the gap can be induced to open at the Fermi surface by rearranging the
charge or the spin density of the electrons in the ground state, i.e. when the system
undergoes an ordering transition. Typically, this corresponds to some kind of Fermi
surface instability where a charge or spin density wave (Grüner, 2000) formation leads
to unit cell doubling. An important early example was the Slater theory (Slater, 1951)
of itinerant antiferromagnets, where the gap opens due to magnetic ordering. Such
instabilities are also common in low dimensional solids such as organic charge-transfer
salts (Grüner, 2000), leading to rich phase diagrams with many exotic properties.
Such ordering transitions typically take place at finite temperature, and can often be
successfully described using conventional approaches based on the band theory picture.
These situations have attracted considerable attention in recent years, but we will not
them discuss them further in this overview.

When does band theory work?. The success of the band theory approach was so
impressive that already in 1930s Slater announced (Slater, 1934) that the solid state
physics is a solved problem, and that we only need fast computers to accurately pre-
dict physical properties of any material. In the last few decades the computers did
become amazingly fast - but in many interesting cases the band structure approach
proved insufficient. When does that happen? To understand this important issue from
a general point of view we need to recall the implicit assumptions of the band structure
approach.

The band theory picture describes the dynamics of one electron moving through
a solid, while the effects of all the other electrons is approximated by modifying the
effective potential energy surface - the pseudopotential - on which it moves. This
approximation is generally expected to be valid whenever the kinetic energy of the



6 Introduction to Metal-Insulator Transitions

electrons is dominant over the other energy scales in the problem. A most naive es-
timate would involve simply calculating the so-called rs-number: rs = Ec/EF , where
Ec is the average Coulomb energy per particle and EF is the Fermi energy. The rs-
number ranges between 3 and 5 even in good metals, and thus one would naively think
that band theory should never work. However, one has to keep in mind the following
important facts (Ashcroft and Mermin, 1976) that minimize the role of interactions:

• In metals screening reduces the magnitude of electron-electron and electron-
impurity interactions to a significant degree.

• The largest part of the Coulomb energy (Hartree and exchange terms) contributes
to redefining the pseudopotential, and only the “correlation” energy gives rise to
many-body effects.

• The Pauli principle considerably restricts the phase space for electron-electron
scattering, as described by Fermi liquid renormalizations.

As a result, the excitations in an electron gas can be viewed as a dilute collection of
quasi-particle excitations, as described by the Landau’s Fermi liquid theory (Landau,
1957; Landau, 1959). In a nutshell, a Fermi liquid is “protected” by a large kinetic
energy scale of the electrons in their ground state – a direct result of their Fermi
statistics. In good metals, the Fermi energy is typically in the electron-Volt range and
the effects of electron correlations and impurity scattering can be treated as small
perturbations (Abrikosov, Gor’kov and Dzyaloshinskii, 1975).

And...when does it fail?. In materials close to the metal-insulator transition the sit-
uations is very different. Here, the Fermi energy is typically small, and the “quantum
protectorate” of the Pauli principle starts to weaken. This situation is found, for ex-
ample, in

• Narrow band materials such as transition-metal oxide V2O3 .

• Doped semiconductors such as Si:P or diluted two-dimensional electron gases.

• Doped magnetic (Mott) insulators such as the famous high-Tc cuprate La2−xSrxCuO4.

In all these cases the potential energy terms coming from either residual electron-
electron interactions or due to disorder (electron-impurity interaction) become com-
parable to the Fermi energy, and the ground state of the system can undergo a sudden
and dramatic change - the electrons become bound or “localized”. The material ceases
to conduct although band theory does not predict any gap at the Fermi surface. In the
following we briefly describe the early ideas on how this can take place, and discuss
some general features of such quantum critical points.

1.2.2 Interactions: the Mott transition

Many insulating materials have an odd number of electrons per unit cell, thus band
theory would predict them to be metals - in contrast to experiments. Such compounds
(e.g. transition metal oxides) often have antiferromagnetic ground states, leading Slater
to propose that spin density wave formation (Slater, 1951)is likely at the origin of the
insulating behavior. This mechanism does not require any substantial modification of
the band theory picture, since the insulating state is viewed as a consequence of a
band gap opening at the Fermi surface.
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According to Slater (Slater, 1951), such insulating behavior should disappear above
the Neel temperature, which is typically in the 102 K range. Most remarkably, in most
antiferromagnetic oxides, clear signatures of insulating behavior persist at tempera-
tures well above any magnetic ordering, essentially ruling out Slater’s weak coupling
picture.

What goes on is such cases was first clarified in early works by Mott (Mott,
1949)and Hubbard (Hubbard, 1963), tracing the insulating behavior to strong Coulomb
repulsion between electrons occupying the same orbital. Within this picture, which
is appropriate for narrow-band systems (Mott, 1990), the electrons tunnel between
weakly hybridized atomic orbitals, as described by a Hubbard Hamiltonian

HHUB = −
∑
〈ij〉σ

(
tc†iσcjσ + h. c.

)
+
∑
jσ

εjc
†
jσcjσ + U

∑
j

c†j↑cj↑c
†
j↓cj↓. (1.1)

Here, the operator c†iσ creates an electron of spin σ in the i-th orbital, t is the tunneling
element describing the inter-orbital hybridization, εj represents the corresponding site
energy, and U describes the on-site Coulomb repulsion.

Fermi liquid Mott insulator

U* (T)

T0

Tc

Uc1(T) Uc2(T)

Quantum critical

region
Instability 

line

Fig. 1.4 Phase diagram for a fully frustrated half-filled Hubbard model calculated from

DMFT theory. At low temperatures the Fermi liquid and the Mott insulating phases are

separated by a first order transition line, and the associated coexistence region. Very recent

work (Terletska, Vučičević, Tanasković and Dobrosavljević, 2011) established that at T > Tc

the intermediate metal-insulator crossover region show all the features expected for the quan-

tum critical regime, including the characteristic scaling behavior for the family of resistivity

curves.
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When the lattice has integer filling per unit cell, then electrons can be mobile only
if they have enough kinetic energy (EK ∼ t) to overcome the Coulomb energy U . In the
narrow band limit of t� U , the electrons do not have enough kinetic energy, and a gap
opens in the single-particle excitation spectrum, leading to Mott insulating behavior.
This gap Eg ≈ U − B (here B ≈ 2zt is the electronic bandwidth; z being the lattice
coordination number) is the energy an electron has to pay to overcome the Coulomb
repulsion and leave the lattice site. In the ground state, each lattice site is singly
occupied, and the electron occupying it behaves as a spin 1/2 local magnetic moment.
These local moments typically interact through magnetic superexchange interactions
(Anderson, 1959)of the order J ∼ U/t2ij , leading to magnetic ordering at temperatures
of order TJ ∼ J . The insulating behavior, however, is not caused by magnetic ordering,
and will persist all the way to temperatures TMott ∼ Eg � TJ . In oxides, TMott ∼
Eg ∼ 103−104K is typically on the atomic (eV ) scale, while magnetic ordering emerges
at temperatures roughly an order of magnitude lower TJ ∼ 100− 300K.

We note that Mott’s simple argument for the stability of the interaction-driven
insulator does not directly rely on a periodicity of a lattice. Even if the site energies εi
or the hopping elements tij are random variables of moderate variance, the Mott gap
will persist, provided that the on-site repulsion U is large enough as compared to the
typical kinetic energy. This is true, since the Mott gap essentially measures the energy
for an electron to hop to the nearest lattice site - an inherently local process which does
not depend much on long-range periodicity of the lattice. Precisely this behavior is
what takes place in a doped semiconductor deep in the insulating phase, which should
be viewed as a strongly disordered Mott insulator. Clear evidence for the correctness
of this picture is provided by optical experiments (Thomas, Capizzi, DeRosa, Bhatt
and Rice, 1981), which provide unambiguous evidence of the coexistence of the Mott
gap at sufficiently low doping levels.

When the kinetic energy and the Coulomb interaction are comparable, the system
finds itself in the vicinity of the Mott transition (Fig. 1.4). Experimentally, the band-
width can often be controlled by modifying the orbital overlap t, thus the electronic
bandwidth. In several transition metal oxides, for example, this is possible by applying
external hydrostatic pressure. From the theoretical perspective, describing the vicin-
ity of the Mott transition proves quite difficult due to the lack of a small parameter
characterizing this nonperturbative regime. Still, after more then thirty years of work
on the problem, several theoretical approaches have emerged, which provide the phys-
ical picture of the transition region. Early arguments of Mott and Hubbard make it
clear that the gap will close for U . B, but the precise form of the critical behavior
remained elusive.

Correlated metallic state close to the Mott transition. An important step in eluci-
dating the approach to the Mott transition from the metallic side was provided by
the pioneering work of Brinkmann and Rice (Brinkman and Rice, 1970). This work,
which was motivated by experiments on the normal phase of 3He (for a review , see:
(Vollhardt, 1984)), predicted a strong effective mass enhancement close to the Mott
transition. In the original formulation, as well as in its subsequent elaborations (slave
boson mean-field theory (Kotliar and Ruckenstein, 1986), dynamical mean-field theory
(Georges, Kotliar, Krauth and Rozenberg, 1996)), the effective mass is predicted to
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continuously diverge as the Mott transition is approached form the metallic side

m∗

m
∼ (Uc − U)−1. (1.2)

Fig. 1.5 Clear evidence of strong mass enhancements can be seen in experiments on

mono-layer He3 films on graphite (Casey, Patel, Nyéki, Cowan and Saunders, 2003) . In this

system, the solid phase (Mott insulator) can be approached when the density is increased by

the application of hidrostatic pressure.

A corresponding coherence (effective Fermi) temperature

T ∗ ∼ TF /m∗ (1.3)

is predicted above which the quasiparticles are destroyed by thermal fluctuations. As a
result, one expects a large resistivity increase around the coherence temperature, and
a crossover to insulating (activated) behavior at higher temperatures. Because the low
temperature Fermi liquid is a spin singlet state, a modest magnetic field of the order

B∗ ∼ T ∗ ∼ (m∗)−1 (1.4)

is expected to also destabilize such a Fermi liquid and lead to large and positive
magnetoresistance.

The physical picture of the Brinkmann-Rice seems to suggest that the Mott tran-
sition should be viewed as a quantum critical point, where powerlaw behavior of char-
acteristic crossover scales is expected as the transition is approached. On the other
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hand, the Mott transition discussed here describes the opening of a correlation-induced
spectral gap in absence of magnetic ordering, i.e. within the paramagnetic phase. Such
a phase transition is, therefore, not associated with spontaneous symmetry breaking
associated with any static order parameter. Why should the phase transition then have
any second-order (continuous) character at all?

The answer is that... in fact it does not! Later work (Moeller, Dobrosavljević and
Ruckenstein, 1999; Park, Haule and Kotliar, 2008), which presented better descriptions
of inter-site correlations, suggested that such a transition should generically have a
(weakly) first order character, in agreement with early ideas of Mott (Mott, 1949). The
effective mass, even if it does not exactly diverge at the transition, is still expected to
be significantly enhanced in its close vicinity. Such behavior is indeed seen in various
Mott systems (Georges, Kotliar, Krauth and Rozenberg, 1996) that have been studied,
including bulk and two-dimensional He3 liquids (Fig. 1.5), transition metal oxides, and
organic charge-transfer salts.

Physical content of the effective mass enhancement. How should we physically inter-
pret the large effective mass enhancement which is seen in all these systems? What
determines its magnitude if it does not actually diverge at the transition? An answer to
this important question can be given using a simple thermodynamic argument, which
does not rely on any particular microscopic theory or specific model. In the following,
we present this simple argument for the case of a clean Fermi liquid, although its
physical context is, of course, much more general.

In any clean Fermi liquid (Abrikosov, Gor’kov and Dzyaloshinskii, 1975) the low
temperature specific heat assumes the leading form

C(T ) = γT + · · · , (1.5)

where the Sommerfeld coefficient

γ ∼ m∗. (1.6)

In the strongly correlated limit (m∗/m � 1) this behavior is expected only at T .
T ∗ ∼ (m∗)−1, while the specific heat should drop to much smaller values at higher
temperatures where the quasiparticles are destroyed. Such behavior is indeed observed
in many systems showing appreciable mass enhancements.

On the other hand, from general thermodynamic principles, we can express the
entropy as

S(T ) =

∫ T

0

dT
C(T )

T
. (1.7)

Using the above expressions for the specific heat, we can estimate the entropy around
the coherence temperature

S(T ∗) ≈ γT ∗ ∼ O(1). (1.8)

The leading effective mass dependence of the Sommerfeld coefficient γ and that of the
coherence temperature T ∗ cancel out!
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Let us now explore the consequences of the assumed (or approximate) effective
mass divergence at the Mott transition. As m∗ −→ ∞, the coherence temperature
T ∗ −→ 0+, resulting in large residual entropy

S(T −→ 0+) ∼ O(1). (1.9)

We conclude that the effective mass divergence indicates the approach to a phase with
finite residual entropy!

Does not this result violate the Third Law of Thermodynamics?! And how can
it be related to the physical picture of the Mott transition? The answer is, in fact,
very simple. Within the Mott insulating phase the Coulomb repulsion confines the
electrons to individual lattice sites, turning them into spin 1/2 localized magnetic
moments. To the extend that we can ignore the exchange interactions between these
spins, the Mott insulator can be viewed as a collection of free spins with large residual
entropy S(0+) = R ln 2. This is precisely what happens within the Brinkmann-Rice
picture; similar results are obtained from DMFT, a result that proves exact in the
limit of large lattice coordination (Georges, Kotliar, Krauth and Rozenberg, 1996).

Fig. 1.6 Temperature dependence of entropy extracted from specific heat (inset) experiments

(Flouquet, 2005) on several heavy-fermion materials. Essentially the entire doublet entropy

S = R ln 2 is recovered by the time the temperature has reacued T ∗ ≈ 10K, consistent with

a large mass enhancement m∗ ∼ 1/T ∗.

In reality, the exchange interactions between localized spins always exist, and they
generally lift the ground state degeneracy, restoring the Third Law. This happens
below a low temperature scale TJ , which measures the effective dispersion of inter-site
magnetic correlations (Moeller, Dobrosavljević and Ruckenstein, 1999; Park, Haule and
Kotliar, 2008) emerging from such exchange interactions. In practice, this correlation
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temperature TJ can be very low, either due to effects of geometric frustration, or
additional ring-exchange processes which lead to competing magnetic interactions.

We conclude that the effective mass enhancement, whenever observed in experi-
ment, indicates the approach to a phase where large amounts of entropy persist down
to very low temperatures. Such situations very naturally occur in the vicinity of the
Mott transition, since the formation of local magnetic moments on the insulating side
gives rise to large amounts of spin entropy being released at very modest tempera-
tures. A similar situation is routinely found (Stewart, 1984; Hewson, 1993; Flouquet,
2005) in the so-called “heavy fermion compounds(e.g. rare-earth intermetallics) fea-
turing huge effective mass enhancements. Here, local magnetic moments coexist with
conduction electrons giving rise to the Kondo effect, which sets the scale for the Fermi
liquid coherence temperature T ∗ ∼ 1/m∗, above which the entire free spin entropy
S(T ∗) ∼ R ln 2 is recovered (Fig. 1.6). This entropic argument is, in turn, used to
experimentally prove the existence of localized magnetic moments within the metallic
host.

We should mention that other mechanisms of effective mass enhancement have also
been considered. General arguments (Millis, 1993) indicate that m∗ can diverge when
approaching a quantum critical point corresponding to some (magnetically or charge)
long-range ordered state. This effect is, however, expected only below an appropriate
upper critical dimension (Sachdev, 2011), reflecting an anomalous dimension of the
incipient ordered state. In addition, this is mechanism produced by long wavelength
order-parameter fluctuations, and is thus expected to contribute only a small amount
of entropy per degree of freedom, in contrast to local moment formation. It is in-
teresting to mention that weak-coupling approaches, such as the popular “on-shell”
interpretation of the Random-Phase Approximation (RPA) (Ting, Lee and Quinn,
1975), often predict inaccurate or even misleading predictions (Zhang and Das Sarma,
2005) for the effective mass enhancement behavior. As discussed in Chapter 6, more
accurate modern theories such as DMFT can be used to benchmark these and other
weak coupling theories, and reveal the origin of some of the pathologies found when
they are applied to strong coupling.

Finite temperature metal-insulator coexistence region. Since the Fermi liquid metal
and the paramagnetic Mott insulator do not differ on symmetry grounds, there is no
reason why these two phases cannot coexist in a finite range of parameter space. In-
deed, recent theories (Georges, Kotliar, Krauth and Rozenberg, 1996) as well as several
experimental studies (Limelette, Wzietek, Florens, Georges, Costi, Pasquier, Jerome,
Meziere and Batail, 2003b; Limelette, Georges, Jerome, Wzietek, Metcalf and Honig,
2003a) in clean Mott system find such a metal-insulator coexistence region (Fig. 1.7)
leading to a finite temperature first-order phase transition line. Experimentally, an
appreciable drop of resistivity is seen as the system is driven though such a finite tem-
perature Mott transition, which separates the Mott insulating state and the metallic
(Fermi liquid) state. Similarly as in standard liquid-gas systems, the coexistence re-
gion, and the associated first-order line, terminate at the critical end-point at T = Tc.
The corresponding critical behavior has been carefully studied in recent experiments
(Limelette, Georges, Jerome, Wzietek, Metcalf and Honig, 2003a) on chromium-doped
V2O3, and was found to belong to the standard Ising universality class.
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Weak disorder near Mott transitions. All quantities display a discontinuity across any
first-order phase transition, but this jump can be reduced in presence of impurities
or disorder, which tend to locally favor one or the other phase. Well-known droplet
arguments (Imry and Ma, 1975), then suggest that sufficiently strong disorder can
completely suppress such a first-order transition (Berker, 1991), eliminating the finite
temperature metal-insulator coexistence region. To illustrate this argument, consider
an uncompensated doped semiconductor (M. A. Paalanen, 1991), where the bandwidth
of the impurity band can be tuned by varying the donor concentration n. Assume that
n is chosen to lie just below its critical value nc(T ), so that even a small increase
in n would drive the system through a Mott transition, leading to a large resistivity
drop. Here, the reduced donor density δn(T ) = (n− nc(T ))/nc(T ) plays a role of the
magnetic field in an ordinary ferromagnet, which can be used for T < Tc to drive the
system through a first-order transition where the magnetization jumps. A similar first
order Mott metal-insulator transition is precisely what one would expect in our case
as well - if only the donors were ordered with perfect periodicity. In fact, the original
work of Mott (Mott, 1949) considered precisely such a scenario, where one imagines
varying the donor concentration, while ignoring the local density fluctuations.

Fig. 1.7 Phase diagram of the organic salt κ− (BETD−TTF )2Cu[N(CN)2]Cl (Limelette,

Wzietek, Florens, Georges, Costi, Pasquier, Jerome, Meziere and Batail, 2003b). In this ma-

terial, increasing hydrostatic pressure broadens the electronic bandwith, favoring the metallic

state. The first-order Mott transition extends at finite temperature up to the critical end–

point at Tc ≈ 40K. The corresponding coexistence region (shaded) displays hysteresis in

transport.

Unfortunately, in a real material, donor ions assume random positions within the
semiconducting host. A given region of size L can have a local concentration n(L) & nc,
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favoring the formation of a metallic “droplet”. For δnL = n(L) − nc > 0, the energy
of the metallic phase will be lower by the amount

∆EM−I(L) = εδnL, (1.10)

where ε is a constant measuring the density-dependent (free) energy difference between
the metal and the insulator. Creating such a droplet will create a domain wall, which
costs surface energy

Es = σLd−1, (1.11)

where σ is proportional to the surface tension of the droplet. The droplet will be
formed only if

∆EM−I(L) > σLd−1. (1.12)

Note, however, that ∆EM−I(L) ∼ δnL, which is a random quantity. To calculate the
probability that a droplet of size L will be formed, we need to calculate the probability
of a density fluctuation

δnL > σLd−1/ε. (1.13)

Assuming that the donor density fluctuations are uncorrelated on large enough
scales, the probability distribution is given by the “central-limit theorem”

P (δnL) ∼ exp

{
−1

2

δn2L
LdW 2

}
, (1.14)

where W is a constant measuring density fluctuations (disorder strength) on the mi-
croscopic scale. The probability that the droplet of size L will for will, therefore, be of
order

P (L) ∼ exp

{
−1

2

σ2L2d−2

ε2LdW 2

}
= exp

{
−1

2

σ2Ld−2

ε2W 2

}
. (1.15)

As we can see, for d > 2, large droplets are exponentially suppressed, i.e. their concen-
tration is exponentially small, and for sufficiently weak disorder (W � σ/ε), even the
very small droplets are exponentially rare. The first-order transition remains sharp, at
least at low enough temperatures.

But what happens when the temperature is increased and we approach the critical
end-point at T = Tc? Here, we expect the droplet surface tension to decrease as a
power of the correlation length ξ ∼ (Tc − T )

−ν
(in mean-field theory ν = 1/2), so even

weak disorder starts to have an appreciable effect. More precisely, here σ(T ) ∼ ξ−3,
and ε(T ) ∼ ξ−1 (see, for example Ref. (Goldenfeld, 1992)), and even small droplets
start to proliferate. The transition is then smeared down to temperatures such that
ε(T )W/σ(T ) ∼ O(1), i.e. W ∼ ξ−2 ∼ (Tc − T )

−2ν
. We conclude that the in presence

of weak disorder, the critical temperature is depressed by

δTc(W ) = Tc(0)− Tc(W ) ∼W 1/2ν . (1.16)

When disorder is sufficiently strong (W ∼ σ(0)/ε(0)), the first order jump is com-
pletely eliminated at finite temperature, and only a smooth metal-insulator crossover
remains. Such behavior is clearly seen in all standard doped semiconductors, where
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the positional disorder in donor or acceptor ions is so strong that no evidence of finite
temperature Mott transition can be seen. A sharp distinction between the metal and
the insulator is then found only at T = 0, where the transition reduces to the conven-
tional quantum critical point. Of course, the resulting critical behavior is completely
different from that of a clean system, where all the conduction electrons simultaneously
turn into local magnetic moments at a well defined critical concentration nc.

In the random case the local density undergoes strong spatial fluctuations. As a
result, many regions form where the local density is much lower then the average. Here,
one expects the electrons to undergo local Mott localization. In the remaining regions
the local density is higher the average, and the electrons remain itinerant. This simple
physical picture thus suggest a two-fluid behavior (Paalanen, Graebner, Bhatt and
Sachdev, 1998) of conduction electrons and local magnetic moments - a situation very
different then what one expects in a weakly disordered metal. Describing such disorder-
enhanced strong correlation effects proves theoretically to be extremely difficult, since
the theory must account for the effective interaction between such disorder-induced
local moments and the remaining itinerant electrons. Developing such a theory should
include an appropriate description of the corresponding Kondo screening processes
in a disordered environment (Dobrosavljević, Kirkpatrick and Kotliar, 1992). This
remains one of the most challenging open problems in this field, although important
advances have recently been accomplished (Miranda and Dobrosavljevic, 2005) based
on dynamical mean-field approaches.

f

Fig. 1.8 The simplest model for disorder-induced cluster states near first-order phase tran-

sitions is provided by the random-field Ising model (Imry and Ma, 1975). An illustration is

provided by recent simulation results (Moreo, Mayr, Feiguin, Yunoki and Dagotto, 2000),

which show how in d=2, stronger disorder (W=3 - pannel (a)) creates many small size clus-

ters, while only few large ones remain for sufficiently weak disorder (W=1.5 - pannel (b)).

Similar behavior is expected (Imry and Ma, 1975) near any disorder-smeared first order phase

transition.

An especially interesting situation is found in d = 2, where both the bulk energy
gain ∆EM−I(L) = εδnL ∼ LW , and the surface energy Es = σL both scale linearly
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with the droplet size L, allowing for arbitrarily large droplets. The typical droplet size
thus diverges, and the first-order transition is suppressed for arbitrarily weak disorder.
This situation may be relevant for high mobility (weak disorder) two-dimensional
electron gases (Abrahams, Kravchenko and Sarachik, 2001). Here, behavior reminiscent
of a Mott transition (m∗ ∼ (n − nc)−1) seems to emerge (Kravchenko and Sarachik,
2004) only at T = 0, while only a smooth metal-insulator crossover persisting at finite
temperatures. We should note, however, that the above expressions are valid only for
sufficiently large droplets containing many impurities, such that Gaussian statistics
applies. At weak disorder, the average distance between impurities ` is large, and the
disorder can produce only droplets larger then a certain minimum size Lmin � `. We
thus expect that reasonably large scale inhomogeneities should emerge (Fig. 1.8) when
weak disorder is introduced near first-order metal-insulator transitions in d = 2.

Is Wigner crystallization a Mott transition in disguise?. The original ideas of Mott
(Mott, 1949), who thought about doped semiconductors, envisioned electrons hopping
between well localized atomic orbitals corresponding to donor ions. In other Mott sys-
tems, such as transition metal oxides, the electrons travels between the atomic orbitals
of the appropriate transition metal ions. In all these cases, the Coulomb repulsion re-
stricts the occupation of such localized orbitals, leading to the Mott insulating state,
but it does not provide the essential mechanism for the formation such tightly bound
electronic states. The atomic orbitals in all these examples result from the (partially
screened) ionic potential within the crystal lattice.

The situation is more interesting if one considers an idealized situation describing
an interacting electron gas in absence of any periodic (or random) lattice potential due
to ions. Such a physical situation is achieved, for example, when dilute carriers are
injected in a semiconductor quantum well (Ando, Fowler and Stern, 1982), where all
the effects of the crystal lattice can be treated within the effective mass approximation
(Ashcroft and Mermin, 1976). This picture is valid if the Fermi wavelength of the
electron is much longer then the lattice spacing, and the quantum mechanical dynamics
of the Bloch electron can be reduced to that of a free itinerant particle with a band
mass mb. In such situations, the only potential energy in the problem corresponds to
the Coulomb repulsion EC between the electrons, which is the dominant energy scale
in low carrier density systems. At the lowest densities, EC � EF , and the electrons
form a Wigner crystal lattice (Wigner, 1934) to minimize the Coulomb repulsion.

Here, each electron is confined not by an ionic potential, but due to the formation
of a deep potential well produced by repulsion from other electrons. The same mech-
anism prevents double occupation of such localized orbitals, and each electron in the
Wigner lattice reduces to a localizes S = 1/2 localized magnetic moment. A Wigner
crystal is therefore nothing but a magnetic insulator: a Mott insulator in disguise. At
higher densities, the Fermi energy becomes sufficiently large to overcome the Coulomb
repulsion, and the Wigner lattice melts (Tanatar and Ceperley, 1989). The electrons
then form a Fermi liquid. The quantum melting of a Wigner crystal is therefore a
metal-insulator transition, perhaps in many ways similar to a conventional Mott tran-
sition. What kind of phase transition is this? Despite years of effort, this important
question is still not fully resolved.

What degrees of freedom play the leading role in destabilizing the Wigner crystal as
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EgapEgap

Fig. 1.9 In a Wigner crystal, each electron is confined to a potential well produced by

Coulomb repulsion from neighboring electrons, forming a spin 1/2 local moment. The low-

est energy particle hole excitation creates a vacancy-interstitial pair (Cândido, Phillips and

Ceperley, 2001), which costs an energy Egap comparable to the Coulomb repulsion.

it melts? Even in absence of an accepted and detailed theoretical picture describing this
transition, we may immediately identify two possible classes of elementary excitations
which potentially contribute to melting, as follows.

• Collective charge excitations (“elastic” deformations) of the Wigner crystal. In the
quantum limit, these excitations have a bosonic character, but they persist and
play an important role even in the semi-classical (kBT � EF ) limit, where they
contribute to the thermal melting of the Wigner lattice (Thouless, 1978). These ex-
citations clearly dominate in high magnetic field (Chen, Sambandamurthy, Wang,
Lewis, Engel, Tsui, Ye, Pfeiffer and West, 2006), where both the spin degrees of
freedom and the kinetic energy are suppressed due to Landau quantization.

• Particle-hole excitations leading to vacancy-interstitial pair formation (Fig. 1.9).
These excitations have a fermionic character, where the spin degrees of freedom
play an important role. Virtual excitations of this type give rise to superexchange
processes which produce magnetic correlations (Cândido, Bernu and Ceperley,
2004) within the Wigner crystal. These excitations would exist even if dynamic
deformations of the Wigner lattice are suppressed, for example by impurity pin-
ning. Recent quantum Monte-Carlo simulations indicate(Cândido, Phillips and
Ceperley, 2001) that the effective gap for vacancy-interstitial pair formation seems
to collapse precisely around the melting of the Wigner crystal. If these excitation
dominate, then the melting of the Wigner crystal is a process very similar to
the Mott metal-insulator transition, and may be expected to produce a strongly
correlated (m∗/m � 1) Fermi liquid on the metallic side. Behavior consistent
with this possibility has recently been documented (Kravchenko and Sarachik,
2004) in several two-dimensional electron systems. A microscopic theory for a
simplified model of such Wigner-Mott transitions has recently been solved (Cam-
jayi, Haule, Dobrosavljevic and Kotliar, 2008; Amaricci, Camjayi, Haule, Kotliar,
Tanasković and Dobrosavljević, 2010), clarifying the mechanism for the effective
mass enhancement on the conducting side.

We should mention, however, that the Wigner crystal melting in zero magnetic field
is believed (Tanatar and Ceperley, 1989) to be a weakly first order phase transition.
Conventional (e.g. liquid-gas or liquid-crystal) first order transitions are normally asso-
ciated with a density discontinuity and global phase separation within the coexistence
dome. For charged systems, however, global phase separation is precluded by charge
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neutrality (Gor’kov and Sokol, 1987). In this case, one may expect the emergence of
various modulated intermediate phases, leading to bubble or stripe (Jamei, Kivelson
and Spivak, 2005), or possibly even “stripe glass” (Schmalian and Wolynes, 2000)
order. While convincing evidence for the relevance of such “nano-scale phase sep-
aration” has been identified (Terletska and Dobrosavljević, 2011) in certain systems
(Jaroszyński, Andrearczyk, Karczewski, Wróbel, Wojtowicz, Popović and Dietl, 2007),
recent work seems to indicate (Waintal, 2006; Clark, Casula and Ceperley, 2009) that
such effects may be negligibly small for Wigner crystal melting.

1.2.3 Localization by disorder

A small concentration of impurities or defects simply produces random scattering of
mobile electrons. In ordinary metals, the kinetic energy of electrons is generally so
large, that the random potential due to impurities can be treated as a small perturba-
tion. In this case, the Drude theory (Ashcroft and Mermin, 1976) applies, where the
conductivity takes the form

σ ≈ σo =
ne2τtr
m

, (1.17)

where n is the carrier concentration, e the electron charge and m its band mass.
According to Matthiessen’s rule (Ashcroft and Mermin, 1976), the transport scattering
rate takes additive contributions from different scattering channels, viz.

τ−1tr = τ−1el + τ−1ee (T ) + τ−1ep (T ) + · · · . (1.18)

Here, τ−1el is the elastic scattering rate (describing impurity scattering), and τ−1ee (T ),
τ−1ep (T ),..., describe inelastic scattering processes from electrons, phonons, etc. It is
important to note that in this picture the resistivity ρ = σ−1 is strictly a monotonically
increasing function of temperature

ρ(T ) ≈ ρo +ATn, (1.19)

where A > 0, and the exponent n depends on the scattering process (n = 1 for electron-
phonon scattering; n = 2 for electron-electron scattering, etc.). The residual resistivity
ρo = σ−1(T = 0) is thus viewed as a measure of impurity (elastic) scattering.

In contrast, in low carrier density systems, the impurity potential is comparable or
larger then the Fermi energy, and the electrons can get trapped, i.e. “localized” by the
impurities. Of course, this process generally leads to a sharp metal-insulator transition
only at T = 0, since at finite temperature the electrons can overcome the impurity
binding potential through thermal activation. In the low temperature limit, a continu-
ous metal – insulator transition is typically found (Rosenbaum, Andres, Thomas and
Bhatt, 1980), where the conductivity decreases in a power – law fashion

σ(T = 0) ∼ (n− nc)µ,

where the conductivity exponent µ characterizes the critical point. The precise value
of the critical exponent µ, as well as other aspects of the transition depend strongly
on the specific form of disorder, and especially on the characteristic lengthscale for
disorder.
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Percolation transition. The simplest situation where disorder can cause electron lo-
calization is found in cases where the random potential is sufficiently “smooth”. More
precisely, consider the situation where the spatial correlation length for the random
potential is much larger then the phase coherence length Lφ (Lee and Ramakrishnan,
1985).

Fig. 1.10 Critical behavior at the bond percolation for a 3D cubic lattice, following (Kirk-

patrick, 1973). Percolation probability(dashed line) P (p) and conductance (symbols) G(p)

are shown as a function of the bond probability p. The solid line is the prediction of an

(approximate) effective medium theory.

In this regime, the influence of the random potential can be described in a semi-
classical picture, where quantum interference processes can largely be ignored, and
the calculation of the resistivity reduces to solving a percolation problem (Stauffer
and Aharoni, 1994) describing a random resistor network.

As the electrons are added to the system, the electron liquid will first fill the deepest
potential wells, thus forming small metallic “puddles”. At low temperature, regions
where the random potential V (r) > EF is essentially free of electrons and therefore
represent insulating areas. When the electron density (and thus EF ) increases, the
metallic puddles grow and eventually connect at the percolation threshold; the system
becomes metallic.

The critical behavior of the conductivity within such a percolation approach has
been studied in detail (Stauffer and Aharoni, 1994), giving



20 Introduction to Metal-Insulator Transitions

µ ≈
{

2.0 for d = 3,
1.3 for d = 2.

(1.20)

Note (see Fig. 1.10) that such dimensionality-dependent critical behavior is seen only
within a narrow critical region. In d = 3, for example, the conductance behavior
is rougly linear, in agreement with the prediction of the effective-medium theory
(Kirkpatrick, 1973) which does not capture such dimensionality dependence. This the-
ory, as any mean-field description, works equally well in any dimension - everywhere
except within a narrow critical region, where long-wavelength fluctuations produce
dimensinality-dependent behavior.

The percolation theory predictions can be directly compared experiments, and
agreement is found in a number of systems such as granular metals (Beloborodov,
Lopatin, Vinokur and Efetov, 2007), where the characteristicv inhomogeneities scale is
sufficiently large. The percolation scenario seems also to apply (Shahar, Tsui, Shayegan,
Shimshoni and Sondhi, 1997) to certain experiments showing apparent violation of the
expected quantum critical scaling in quantum Hall plateau transitions. Similar behav-
ior is found, for example, in manganese oxide materials showing colossal magneto-
resistance, where disorder induces nano-scale phase separation (Dagotto, 2002), but
the transport behavior can be well described using an effective random resistor model
and the underlying percolation processes. Here the droplets sizes are not necessarily
very large, but the temperatures are sufficiently elevated to produces sufficiently short
Lφ. Such percolative phase coexistence has very recently been observed by nano-scale
x-ray imaging on a thermally-driven Mott transition in V O2 (Qazilbash, Tripathi,
Schafgans, Kim, Kim, Cai, Holt, Maser, Keilmann, Shpyrko and Basov, 2011).

In other systems, most notable uncompensated doped semiconductors, low temper-
ature studies find µ ≈ 0.5, indicating drastic departure from the percolation picture.
Can a better description of quantum effects provide the answer? Or does one have
to include strong correlation effects as well? To address this question, it is useful to
first discuss the prediction of a full quantum theory of localization for noninteracting
electrons in presence of disorder.

Tunneling vs. localization. The semiclassical percolation picture assumes that in the
insulating phase the electrons are confined to potential wells. It ignores the possibility
of tunneling through barriers separating the wells - a process that is allowed by quan-
tum mechanics. Although the tunneling probability is exponentially small with the
barrier size, it always remains finite. Naively, one would expect that the tunneling pro-
cesses would lead to an exponentially small but finite conductivity even in the regime
where classical percolation would predict insulating behavior. According to this argu-
ment, quantum mechanical tunneling would smear the metal insulator transition, and
no true insulating behavior would be possible, even at T = 0. This argument is, of
course, incorrect because is based on an incomplete description of quantum mechanics.
It does take into account the tunneling effect, but it ignores the crucial interference
processes without which electronic bound states could not be formed. To fully ap-
preciate this, we should recall that interference processes are what gives rise to the
formation of quantized electronic orbits even for simple bound states within atoms or
molecules.



Basic mechanisms of metal-insulator transitions 21

Anderson localization. The possibility that true electronic bound states can be formed
in presence of a random potential was first discussed by Anderson in 1958 (Anderson,
1958). This pioneering work argued that sufficiently strong randomness will localize
all the electronic states within a given band, leading to a sharp metal-insulator the
transition at T = 0. Anderson’s original argument takes the local point of view, which
provides a very transparent physical picture of how localization can occur, as follows.

Suppose that an experiment or a computer simulation can examine only local
quantities associated with a particular lattice site. Can such a study determine whether
the material is a metal or an Anderson insulator? The answer (Anderson, 1958) is -
somewhat surprisingly - yes! One simply has to determine the escape rate ~/τesc from
the local orbital. The recipe how to do this has a long history, and is provided by
Fermi’s Golden Rule:

~
τesc

= t2ρloc(ε). (1.21)

where t is the appropriate matrix element between the local orbital and its environ-
ment. The local density of available states ρloc(ε), to which an electron of energy ε
can escape, is proportional to the wavefunction amplitude on this site

ρloc(ε) ∼ |ψi(ε)|2. (1.22)

If electronic states in the relevant energy range are all localized (i.e. bound), then only
a small number of such states have appreciable overlap with the given site. Therefore,
in the case of the Anderson insulator, the local density of states (LDOS)will consist
of only a few discrete δ-function peaks (Fig. 1.11) with appreciable weight - which are
very improbable to reside at the Fermi energy.

At strong disorder W � B, the typical density of available states and thus the
typical escape rate from a given site can be shown to vanish (Anderson, 1958), and
the electron remains localized. In the Anderson insulator, the spectrum of the local
environment of any given site has a gap with a certain typical size measuring the local-
ization strength. According to this point of view, the ultimate localization mechanism
in both the Mott and the Anderson insulator is somewhat similar: the electron cannot
find levels to which it can escape.

Anderson’s original arguments demonstrated that sufficiently strong disorder is
able to localize all electronic states within a narrow band of electronic states. At weaker
disorder, only the states near the band edge are expected to localize, but other states at
energies E > Ec - the so-called “mobility edge” - remain extended. As the Fermi energy
is increased (for example by carrier doping), the system undergoes an Anderson metal-
insulator transition. Following the development of the scaling theories of localization
(Abrahams, Anderson, Licciardello and Ramakrishnan, 1979), and especially due to
recent progress in numerical studies of the problem, the corresponding critical behavior
is now well understood for noninteracting electrons. These studies established (see also
Chap. 3) that for noninteracting electrons at T = 0, all the electronic states remain
localized for dimensions d ≤ 2, while a continuous metal-insulator transition is found
in higher dimensions. According to most recent estimates, the corresponding critical
exponent

µ ≈ 1.58 (1.23)
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Fig. 1.11 Wavefunction amplitude |ψi|2 of strongly localized states. Since the concept of An-

derson localization applies to any wave in random media, recent efforts have documented lo-

calization of light in disordered optical media. Shown here are spectra experimentally observed

in photonic crystals (Sapienza, Thyrrestrup, Stobbe, Garcia, Smolka and Lodahl, 2010).

in d = 3, and becomes even larger in higher dimensions (see below).
It is interesting to note that the conductivity exponent at d = 3 Anderson transi-

tion is not too different from that of percolation theory (µperc ≈ 2). In most exper-
imental systems where the metal-insulator transition has been studied, the observed
exponent is much smaller (µ . 1). This indicates that disorder-driven mechanisms
which ignore electron-electron interactions cannot hope to explain the behavior at the
metal-insulator transition.

1.2.4 Basic interaction effects in disordered systems

In most realistic systems both the disordered strength and the electron-electron in-
teractions have comparable magnitudes. In such cases, the localization mechanisms
of Mott and Aderson cannot be considered separately, since each will influence and
affect the other. Despite recent advances (see Chap.6), a complete theory of such a
Mott-Anderson transition remains incomplete. Nevertheless, early physical arguments
of Mott (Mott, 1990) already indicate how new and more complicated behavior must
emerge when both mechanisms are at play.

The Mott-Anderson transition. To see this most simply, consider a disordered Hub-
bard model in the strongly localized (atomic) limit. In the absence of disorder, each
site has two energy levels, ε0 = 0 and ε1 = U , where U is the on-site interaction
potential. If the system is half-filled, then each site is singly occupied; the levels ε1
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remain empty. We have one local magnetic moment at each site, and a gap equal to
U to charge excitations.

When disorder is added, each of these energy levels is shifted by a randomly fluc-
tuating site energy −W/2 < εi < W/2. The situation remains unchanged for W < U ,
as all the levels ε′1(i) = U + εi remain empty (for half-filling the chemical potential
is µ = EF = U/2). For larger disorder, those sites with εi > U/2 have the level
ε′0(i) = 0 + εi > µ and are empty. Similarly, those sites with εi < −U/2 have the
excited level ε′1(i) = U + εi < µ and are doubly occupied. Thus for W > U a fraction
of the sites are either doubly occupied or empty. The Mott gap is now closed, although
a fraction of the sites still remain as localized magnetic moments. We can describe this
state as an inhomogeneous mixture of a Mott and an Anderson insulator (as shown in
the center of Fig. 12). However, the empty and doubly occupied sites have succeeded
to completely fill the gap in the average single particle density-of-states (DOS).
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Fig. 1.12 Energy level occupation in the strongly localized (atomic) limit for an Anderson

(left), a Mott (right), and a Mott-Anderson (center) insulator. In a Mott-Anderson insulator,

the disorder strength W is comparable to the Coulomb repulsion U, and a two-fluid behavior

emerges. Here, a fraction of localized states are doubly occupied or empty as in an Anderson

insulator. Coexisting with those, other states remain singly occupied forming local magnetic

moments, as in a Mott insulator. Note that the spins of the local moments may be randomly

oriented indicating the absence of magnetic ordering. The chemical potential is represented

by the dashed line.

This physical picture of Mott, which is schematically represented in Fig. 1.12, is
very transparent and intuitive. The nontrivial question is how the strongly localized
(atomic) limit is approached as one crosses the metal-insulator transition from the
metallic side. To address this question one needs a more detailed theory for the metal-
insulator transition region, which was not available when the questions posed by Mott
and Anderson were put forward.

Coulomb gap. Local moment formation leading to the Mott or the Mott-Anderson in-
sulating state is most important for narrow bands where the on-site Coulomb repulsion
(“Hubbard U”) dominates. This mechanism is most effective close to half-filling, since
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local moment formation requires exactly one electron per orbital. In this regime the
long-range (inter-site) component of the Coulomb interaction plays a secondary role,
because on-site repulsion opposes charge rearrangement. Such a situation is found in
narrow impurity bands (deeply insulating regime) of uncompensated doped semicon-
ductors such as Si:P. Deep in the insulating regime, each electron forms a hydrogenic
bound state with exactly one Phosphorus ion, forming a spin S = 1/2 local magnetic
moment, and charge rearrangements are suppressed.

Fig. 1.13 Tunneling density of states spectra observed (Lee, Massey, Nguyen and Shklovskii,

1999) accross the metal-insulator transition in Si:B. The Coulomb gap is seen to gradually

close and change shape as the transition is crossed. This crossover behavior was interpreted

to reflect the emergence of screening as one approaches the metallic phase.

A more complicated situation is found (Shklovskii and Ėfros, 1984) away from
half filling, which can be realized, for example, in partially compensated Si:P,B. Here
the electrons can occupy different localized states, and many charge rearrangements
are possible. This is the regime considered by the well-known theory of Efros and
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Shklovskii (Efros and Shklovskii, 1975; Shklovskii and Ėfros, 1984), which focuses on
a classical model of spinless electrons distributed among stongly localized states, as
givn by the Hamiltonian

H =
∑
j 6=i

e2

κ|ri − rj|
(nj − n)(nj − n) +

∑
j 6=i

εini. (1.24)

Here nj = 0, 1 is the occupation number of the remaining localized states with
(bare) energy εi at position ri, n is the average occupation per site, and κ is the
dielectric constant of the insulator. For localized electrons, the single-particle (tunnel-
ing) density of electronic states (DOS) is then simply the probability distribution of
the local energy levels

N(ε) =< δ(ε− εi) > (1.25)

of an electron occupying a localized state is shifted (renormalized) by the electrostaic
potential produced by the electrons on all remaining sites.

εi → εRi = εi +
∑
j 6=i

e2

κ|ri − rj|
(nj − n). (1.26)

This electrostatic shift depends, of course, on the precise electronic configuration,
favoring those charge configurations which lower the energies of the occupied states.
In absence of disorder, this effect leads to charge ordering - Wigner crystallization -
opening a hard gap at the Fermi energy.

When sufficiently strong disorder is present, the Wigner gap is smeared, leading
to the soft “Coulomb gap” (Fig. 1.13). The original argument of Efros and Shklovskii
(Efros and Shklovskii, 1975) rested on a stability argument for the ground state with
respect to any single-particle displacement from a given occupied site i to an empty
site j. Stability requires every such excitation to cost positive energy, giving

εj − εi −
e2

κ|ri − rj|
> 0. (1.27)

If the states i and j are within energy ε from the Fermi level, i.e. |εi − εF | < ε,
then their typical separation in space is r(ε) = e2/κε is large if ε is small. The DOS
N(ε) ∼ d

dε [r−3(ε)] then has a soft gap around the Fermi energy. In three dimensions
the result is

N(ε) =
3κ3

πe6
(ε− εF )2. (1.28)

More generally, for interactions of the form V (r) ∼ r−α, with α < d (in d spatial
dimensions), a generalization of this argument gives (Pankov and Dobrosavljević, 2005)
N(ε) ∼ (ε − εF )β , with β = (d − α)/α. Arguing that incomplete (scale-dependent)
screening modifies the form Coulomb interaction within the quantum critical region
of the metal-insulator transition, recent work suggested (Lee, Massey, Nguyen and
Shklovskii, 1999) that in this case α = 2, leading to β = 1/2 in d = 3. While such
critical scaling seems consistent with the experimental results on Si : B, a more
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precise treatment of quantum effects will be needed for a more convincing theory of
the Coulomb gap in the quantum critical region.

It is very important to reiterate that the Anderson localization mechanism by itself
does not lead to opening of any kind of gap at the transition. This scenario, which
provided a popular and attractive scenario for interpreting many transport experi-
ments, rests on the concept of a “mobility edge” - the energy separating the extended
from the localized states. The critical concentration then obtains when all the local-
ized states are filled up and the Fermi energy reaches the mobility edge. Precisely at
the critical point one expects (Mott, 1990) the electronic states “above” the Fermi
energy to be extended, while those “below” the mobility edge to remain localized. A
test of these ideas has very recently become possible through high resolution scanning
tunneling microscopy (STM) experiments (Richardella, Roushan, Mack, Zhou, Huse,
Awschalom and Yazdani, 2010) which can directly determine the degree of wavefunc-
tion localization in an energy-resolved fashion. In contrast to the conventional mobility
edge scenario, these experiments provided striking evidence that, close to the critical
concentration, the electronic states precisely at the Fermi energy are the ones most
strongly localized. This experiment, which will be discussed in more detail in Chap-
ter 7, provided direct evidence that interaction effects cannot be neglected near the
metal-insulator transition, where pseudogap opening plays a key role in controlling the
localization of electronic states. Is the relevant interaction mechanism directly related
to Coulomb glass phenomena? Only time will tell. Still, all these experiments make
it clear that the fundamental – but yet unresolved – physics questions posed by the
early work of Mott cannot be ignored.

Coulomb glass. The long-range Coulomb interactions produce, however, another im-
portant effect. Because Coulomb repulsion favors a uniform charge configuration while
disorder opposes it, these competing interactions give rise to frustration and the emer-
gence of many meta-stable electronic states. As described in Chapter 8, this typically
leads gradual glassy freezing of electrons, to slow relaxation and “aging”, in a fashion
surprisingly similar to glassy phenomena in spin glasses or super-cooled liquids.

The precise relation of the Coulomb gap formation and the glassy freezing has,
however, long remained controversial and ill-understood (Grannan and Yu, 1993). On
the one hand, even the early arguments of Efros and Shklovskii indicate that the
long-range nature of the Coulomb interaction is a key feature for the formation of the
Coulomb gap. On the other, thermal and/or quantum fluctuations can allow charge
rearrangements, generically leading to phenomenon of screening, practically eliminat-
ing the long-range part of the interaction. In contrast, if the electrons are (partially
or fully) frozen in a glassy state, then screening may remain incomplete, allowing the
long-range nature of the Coulomb interaction to manifest itself. This physically plau-
sible idea (Lee and Ramakrishnan, 1985) has found support in very recent theoretical
work (Pastor and Dobrosavljević, 1999; Pastor, Dobrosavljević and Horbach, 2001;
Pankov and Dobrosavljević, 2005), which argues that the two phenomena typically go
hand-in-hand.

Both the formation of the Coulomb gap and the emergence of glassy features
are, at this time, well established features in strongly disordered insulators. But how
should this influence the approach to the metal-insulator transition? Recent theoretical
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(Pastor and Dobrosavljević, 1999; Dobrosavljević, Tanasković and Pastor, 2003b) and
experimental (Bogdanovich and Popović, 2002; Jaroszynski, Popovic and Klapwijk,
2004) works have suggested that in some cases it may dramatically affect the criti-
cal region, perhaps even leading to an intermediate metallic-glass phase with unusual
transport properties (Dalidovich and Dobrosavljević, 2002). This important question
remains far from settled. Still, its fundamental importance has very early been recog-
nized by Mott (Mott, 1990), who noted that the phenomenon of screening must be
dramatically modified as one crosses from a metal to an insulator. In short, the localiza-
tion of electrons immediately produces the demise of screening, so the two phenomena
must be profoundly linked. Mott’s dream was to understand how this “unscreening”
occurs at the metal-insulator transition, a physical question of basic importance, but
one that is typically not addressed by most conventional theories, thus remaining a
major challenge for future work.

1.3 Current theories of the metal-insulator transition

1.3.1 MIT as a critical point

Absence of minimum metallic conductivity. The early ideas of Mott and Anderson
identified the basic mechanism for the metal-insulator transition, but did not provide
specific and detailed prediction for the critical behavior, or even the precise nature
of this phase transition. In fact, up to the late 1970s, Mott’s arguments (Mott, 1990)
suggested that the transition is discontinuous, where a minimum metallic conductivity
should exist on the metallic side even at T = 0. Mott’s early argument examined
the transport behavior based on Drude’s picture, where increasing disorder simply
reduces the elastic mean-free path `. Since the scattering rate τ−1tr from any impurity
assumes a maximum possible value which is finite (the so-called “unitarity limit”) , the
corresponding mean-free path ` = vF τtr cannot be shorter then a microscopic lower
cutoff a of the order of the lattice spacing. Therefore, it was argued, the conductivity
of any metal is bounded from below by the “Mott limit”

σ ≥ σmin =
ne2a

mvF
.

Early low temperature experiments on many materials seemed to confirm these pre-
dictions by only reporting metallic conductivities in excess of σmin. The metal-insulator
transition in disordered systems was thus assumed to have a first-order character, sim-
ilarly as the Mott transition in clean systems. Similarly, high temperature behavior in
a number of metallic systems was found to display “resistivity saturation”, where the
Mott limit is approached due to incoherent (inelastic) scattering.

With the development of more advance cryogenic techniques, lower temperatures
and more precise measurements became available. Our perspective on the fundamental
nature of the transition has been deeply influenced by the ground-breaking experiments
on Si:P in early 1980s (Rosenbaum, Andres, Thomas and Bhatt, 1980; Paalanen,
Rosenbaum, Thomas and Bhatt, 1982). These experiments provided evidence (Fig.
1.14) of metallic conductivities as much as two orders of magnitude smaller then σmin.
They also made it clear that the metal-insulator transition in doped semiconductors
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is a continuous (second order) phase transition (Paalanen, Rosenbaum, Thomas and
Bhatt, 1982), which bears many similarities to conventional critical phenomena. This
important observation has sparked a veritable avalanche of experimental (M. A. Paala-
nen, 1991; Sarachik, 1995) and theoretical (Wegner, 1976; Wegner, 1979; Abrahams,
Anderson, Licciardello and Ramakrishnan, 1979; Schaffer and Wegner, 1980) works,
most of which have borrowed ideas from studies of second order phase transitions.
Indeed, many experimental results were interpreted using scaling concepts (Lee and
Ramakrishnan, 1985), culminating with the famed scaling theory of localization (Abra-
hams, Anderson, Licciardello and Ramakrishnan, 1979), and the subsequent extensions
to incorporate the interaction effects (Finkel’stein, 1983; Finkel’stein, 1984; Castellani,
Castro, Lee and Ma, 1984; Belitz and Kirkpatrick, 1994).

Fig. 1.14 Critical behavior of the conductivity extrapolated to T → 0 for uncompensated

Si:P (Rosenbaum, Andres, Thomas and Bhatt, 1980). Sharp power-law behavior with critical

exponent µ ≈ 1/2 is extending over a surprisingly large concentration range. Finite values of

the conductivity much smaller then σM (shown by arrow) are observed close to the transition.
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Phenomenological scaling formulation. Microscopic theories describing the MIT re-
main controversial and somewhat incomplete. We should stress, however, that scaling
behavior near second order phase transitions is a much more robust and general prop-
erty then any particular approximation scheme or microscopic model. Historically, the
scaling hypothesis of Widom (Widom, 1965) has been put forward for conventional
(classical) critical phenomena much before the microscopic theory of Wilson (Wilson
and Kogut, 1975) became available. It has provided crucial guidance for experimen-
talist to systematically analyze the experimental data, and has provided a framework
and direction for the development of microscopic theories.

A phenomenological scaling hypothesis can be formulated for quantum criticality
(Sachdev, 2011) as well, in direct analogy to conventional critical phenomena. In par-
ticular, if the scaling description is valid, then a single correlation length ξ ∼ δn−ν

exists characterizing the system, and the corresponding time scale τξ ∼ ξz, both of
which diverge in a powerlaw fashion at the critical point. Here, δn = (n − nc)/nc is
the dimensionless distance from the transition, and we have introduced the correla-
tion length exponent ν and the “dynamical exponent” z. Because of the Heisenberg
Uncertainty Principle, the corresponding energy (temperature) scale

T ∗ ∼ ~
τξ
∼ δnνz

vanishes as the critical point is approached.
For the MIT the conductivity plays a role similar to an order parameter, as it

vanishes at T −→ 0 in the insulating phase. Its sharp critical behavior at T = 0
is rounded at finite temperature, suggesting a scaling behavior similar to that of a
ferromagnet in an external (symmetry breaking) field. The conductivity can therefore
be written in a scale invariant form as

σ(δn, T ) = b−µ/ν fσ (b1/νδn, bzT ).

Here, T is the temperature, b is the length rescaling factor, and µ is the conductivity
exponent.

The T = 0 behavior σ (T = 0) ∼ δnµ can be obtained by working at low tempera-
tures and choosing b = δn−ν ∼ ξ. We obtain the scaling form

σ(T ) = δnµφ̃σ(T/δnνz), (1.29)

where φ̃σ(y) = fσ(1, y). Finite temperature corrections in the metallic phase are ob-
tained by expanding

φ̃σ(y) ≈ 1 + ayα, (1.30)

giving the low temperature conductivity of the form

σ(δn, T ) ≈ σo(δn) +mσ(δn)Tα. (1.31)

Here, σo(δn) ∼ δnµ, and mσ(δn) ∼ δnµ−ανz. Since the form of the scaling function
φσ(y) is independent of the distance to the transition δn, the exponent α must take
an universal value in the entire metallic phase, and therefore can be calculated by
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perturbation theory at weak disorder. For example, the interaction corrections in d = 3
(Lee and Ramakrishnan, 1985) lead to α = 1/2.

This scaling argument provides a formal justification for using the predictions from
perturbative quantum corrections as giving the leading low temperature dependence in
the entire metallic phase. Note, however, that the prefactor mσ(δn) (i.e. its dependence
on δn) is not correctly predicted by perturbative calculations, since it undergoes Fermi
liquid renormalizations which can acquire a singular form in the critical region near
the metal-insulator transition.

The temperature dependence at the critical point (in the critical region) can be
obtained if we put δn = 0, and choose b = T−1/z, giving

σc(T ) = σ(δn = 0, T ) ∼ Tµ/νz. (1.32)

We can also write

σ(n, T ) = Tµ/νzφσ(T/To(n)), (1.33)

where φσ(x) = xµ/νzφ̃σ(x), and the crossover temperature To(δn) ∼ δnνz.

How to experimentally find quantum criticality?. To demonstrate quantum critical
scaling around a MIT one must adopts the following systematic procedure in analyzing
experimental data:

1. Plot σ(δn, T ) vs. T for several carrier concentrations n. Simple powerlaw behavior
σc ∼ T x is expected only at the critical point, and we can identify the critical
concentration (n = nc) as the only curve that looks like a straight line when the
date are plotted on a log-log scale.

2. From the slope of the σc(T ) we find the critical exponent x = µ/νz.

3. Having determined σc(T ) = σ(0, T ) we can now plot φσ(T/To(δn)) = σ(δn, T )/
σc(T ) as a function of T/To(δn). The crossover temperature is determined for
each concentration n in order to collapse all the curves on two branches (metallic
and insulating) of the scaling function φσ(y). This procedure does not assume any
particular functional form (density dependence) for the crossover scale To(δn).

4. Next, we plot To(δn) as a function of δn on log-log scale to determine the cor-
responding exponent νz. If scaling works, then To(δn) should vanish as the tran-
sition is approached, and we expect to find the same exponent from both sides.
The conductivity exponent is then obtained from µ = xνz.

5. A crosscheck can be obtained from extrapolating the metallic curves σ(δn, T ) −→
σo(δn) to T −→ 0, and by determining the exponent µ from the relation σo(n) ∼
δnµ.

All the above expressions are quite general, and can be considered to be a phenomeno-
logical description of the MIT. This is of particular importance in instances where a
scaling approach is utilized to systematically analyze the experimental data in in-
stances where an accepted microscopic theory is not available. Such a situation is
found in several two-dimensional systems, where beautiful and convincing scaling be-
havior is observed, providing evidence that the MIT is a well defined quantum critical
point.
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How to theoretically approach quantum criticality?. To better understand the phys-
ical content of the scaling approach to the MIT, we should contrast it to standard
approaches to critical phenomena, which are by now perfectly well understood. In most
cases, the theory is built based on the emergence of spontaneous symmetry breaking
within the low temperature (ordered) phase. Based on identifying the appropriate or-
der parameter ϕ describing such symmetry breaking, one typically proceeds in the
following steps:

1. Formulate an appropriate Landau theory, which defines how the free energy F [ϕ]
depends on the (spatially fluctuating) order parameter ϕ(x).

2. Mean-field theory (MFT) is obtained by minimizing F [ϕ] and ignoring the spatial
fluctuations of ϕ(x).

3. Examine the effects of long wavelength spatial fluctuations of the order parameter
beyond MFT.

4. The most singular effects of spatial fluctuations are found close to critical points,
and are re-summed using renormalization group (RG) methods.

When this program is implemented in practice, one finds that the mean-field descrip-
tion (steps 1 and 2) suffices everywhere except in a very narrow interval around the
critical point. In fact, it is precisely by examining the leading corrections to MFT
one is able to theoretically estimate the size of the so-called “Ginzburg” region where
non-MFT behavior can be observed. Accounting for non-MFT behavior within such a
critical region is much more difficult, and requires the powerful arsenal of renormal-
ization group (RG) methods (Goldenfeld, 1992). The practical calculations simplify
considerably near the upper critical dimension duc, where the fluctuations corrections
are logaritmically weak, and can be effectively re-summed by a perturbative RG meth-
ods, using ε = duc−d as a small parameter in the theory (Wilson and Fisher, 1972). For
standard magnetic critical phenomena duc = 4, this RG program has been effectively
implemented, and all the appropriate critical exponents calculated to leading order in
ε = 4 − d. When the results are extrapolated to d = 3, very impressive agreement
with both experiments and numerical simulation results has obtained. The theory of
conventional (thermal) critical phenomena can therefore be considered a closed book.

What to do if an order-parameter description is not available?. We emphasize that
the above “standard” approach to criticality relies on being able to identify an ap-
propriate symmetry breaking scheme. For phenomena such as magnetic and charge
ordering or superconductivity, this program can be straightforwardly extended to the
quantum domain, as first discussed by John Hertz (Hertz, 1976). In such cases, es-
pecially for insulating magnets, the familiar approach of Landau theory and weak-
coupling RG methods has been studied in detail, and met some success in describing
quantum criticality (Sachdev, 2011).

When it comes to the metal-insulator transition, the situation is more compli-
cated. Here, despite convincing experimental evidence for criticality, the conventional
approach cannot be applied directly. The fundamental difficulty lies in the absence
of an obvious symmetry breaking scheme needed to build a Landau theory. For this
reason, a simplistic mean-field description of the MIT is not readily available, and one
is forced to look for alternative approaches.
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A clue on how this may be possible is again found by analogy to conventional critical
phenomena, where one generally expects the fluctuations to increase in importance in
low dimensions. Their effects are particularly strong near the lower critical dimension
(LCD) dlc, where they are able to completely suppress the ordering. These phenomena
allow for a particularly elegant approach in systems with continuous broken symmetry
where dlc = 2. Here, an alternative perturbative RG treatment based on an ε = d− 2
expansion has been developed following early ideas of Polyakov (Polyakov, 1975).

The simplest example is the behavior of a Heisenberg magnet near d = 2, where
one examines the low temperature spin-wave corrections to the spin stiffness. Finite
corrections are found for d > 2, while logarithmic singularities of the form T lnL (T is
the temperature and L is the system size) arise precisely in d = 2. This result indicates
the instability of the ordered phase due to infinitesimal thermal fluctuations indicating
that dlc = 2, and allows for a perturbative RG treatment based on expanding around
two dimensions (Nelson and Pelcovits, 1977).

In the case of disorder-driven MITs, one should examine the effects of weak disor-
der on the stability of the metallic phase. If similar singular corrections arise in low
dimensions, then one can not only hope to identify the LCD, but should also be able
to develop a perturbative RG scheme. This elegant approach does not require develop-
ing an appropriate symmetry breaking scheme, thus bypassing the essential stumbling
block in the theory for the MIT. However, it focuses on those physical processes that
describe how weak disorder modifies a clean Fermi liquid. In those instances where the
system is close to instabilities of the clean system, this approach may be insufficient
because new types of low energy excitations may become important. Such a situation
may be found if the clean system is sufficiently close to Mott or Wigner transitions,
in which case strong correlation effects may require a different theoretical framework
and approach. Independent of these issues, the physical content of theories describing
perturbative disorder effects within conventional Fermi liquids is sufficiently rich and
nontrivial, and in the following we discuss its basic ideas and results.

1.3.2 Scaling theories of disorder-driven transitions

Phenomenological β-function. An elegant and compact description of the scaling be-
havior around a critical point is provided by the β-function formulation. What we want
to emphasize here is that the β-function description is simply a alternative language
one can use, rather then a microscopic theory. However, its straightforward applica-
tion to the MIT is based on several implicit assumptions, that allow for a simplified
phenomenology, and which we discuss as follows.

In its original formulation as presented by the “gang of four” (Abrahams, Anderson,
Licciardello and Ramakrishnan, 1979), the β-function describes how the conductance
of the system changes with the (effective) system size. In principle, one could imagine
taking a finite size chunk of disordered metal, and attaching it to contacts. If the exper-
iment is repeated for different sample sizes, then one could experimentally determine
how the conductance depends on the system size.

Why use the conductance and what do we expect to find? The essential physics
is easy to see by thinking about what happens far from the MIT. In a good metal
disorder is weak, and the conductivity σ is large and finite even at T = 0, and the
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standard Drude theory applies. From Ohm’s law, the conductance g then scales with
the system size L as

gmet(L) = σLd−2.

For increasing system sizes (in d > 2), the conductance grows as Ld−2. In the opposite
limit of very strong disorder, we expect all the electrons to form bound (localized)
states with impurities. If ξ is the characteristic (localization) length of these bound
states, then the conductance is expected to decrease exponentially

gins(L) ∼ exp{−L/ξ}.

More generally, we may expect that g(L) do increase with L in the metal, and
decrease in the insulator. What is not a priory obvious is how g(L) behaves around
the transition. The seminal work on the scaling theory for Anderson localization con-
centrated on the logarithmic rate of change of the conducatnce with lengthscale, by
defining the “β-function”

β(g) =
d(ln g)

d lnL
. (1.34)

This quantity is expected to be positive in a metal and negative in the insulator. Its
precise form, or a possible dependence on the sample size L, is not a priori clear.

To make more specific predictions on the critical regime, the “gang of four” made
two key assumptions, as follows:

1. β(g) is a function on g only, but does not depend explicitly on L.

2. β(g) is a smooth (analytic) function near the transition.

In particular, in an Ohmic metal, we find

βmet = d− 2, (1.35)

while in the localized insulator
βins = ln g. (1.36)

Since βmet > 0, and βins < 0, assumptions (1) and (2) then suggest that β(g) has to
change sign at some finite value of the conductance g = gc, and we can write

β(g) ≈ s ln(g/gc), (1.37)

where s = β′(gc) is the critical slope of the β-function. Defining th logarithmic variable
t = ln(g/gc), we can now integrate the β-function equation

d(ln t)

d lnL
≈ s,

from the microscopic cutoff ` to the sample size L, and write

t(L) = to(L/`)
s.

This integration has to be carried out up to the lengthscale (i.e. the correlation length)
L = ξ such that the renormalized distance to the transition δg(L) = (g(L)− gc)/gc ≈
t(L) ∼ O(1). Since at short scales to = t(`) ∼ δgo ∼ δn, we find
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ξ ∼ t1/so ∼ δn1/s.

Thus, the correlation length exponent

ν = 1/s.

At this scale the conductivity is expected to saturate to a (size-independent) macro-
scopic value

σ ≈ gcξd−2 ∼ δn(d−2)ν .

We conclude that the assumptions implied by the β-function formultion, i.e. the scaling
theory of localization predict the validity of “Wegner scaling” for the conductivity
exponent

µ = (d− 2)ν.

It is worth emphasizing that postulating a particular form for the β-function is
completely equivalent to formulating a scaling hypothesis for the critical behavior,
provided that the conductance is assumed to be finite at the transition. Under these
conditions, the scaling hypothesis states that the T = 0 conductance of a finite size
system takes a scaling form

g(δn, L) = fσ (b1/νδn, b/L).

Choosing b = δn−ν ∼ ξ, we can write g(δn, L) = ψ(ξ/L), where ψ(x) = fσ(1, x). The
condition that the conductance is finite at the transition is equivalent to require that
ψ(0) = gc is a finite constant. Using the definition of the β-functon, we then find

β(g) = x−1ψ′(x)/ψ(x),

where x = ψ−1(g). The form of the β-functon can be directly extracted from the
experimental data, provided that an appropriate scaling behavior is found.

Is there a β-function for percolation?. The β-function formulation of the “gang of
four” (Abrahams, Anderson, Licciardello and Ramakrishnan, 1979) may be viewed
as a convenient phenomenological description of how the conductance depends on
lengthscale. While its implicit assumptions prove correct for the problem of Anderson
localization of noninteracting electrons, one may ask the same question for other mod-
els of the metal-insulator transition. In particular, the percolation problem represents
a consistent description of the transition in the semiclassical limit. Since percolation
(Stauffer and Aharoni, 1994) is a well characterized (classical) critical phenomenon,
powerlaw scaling of all quantities is still valid, and many of the same questions raised
by the “gang of four” can be again posed.

Since d = 2 remain above the lower critical dimension for percolation, Wegner
scaling cannot be valid in this case. How is thecaling behavior modified in this case,
and what would the β-function look like? Can it even be defined? How is the finite-
temperature scaling modified, and what form does it take?

These questions are important, since the precise answer allows us to distinguish
experimental systems where percolation behavior dominates from those where genuine
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quantum critical behavior is at play. In the case of the percolation transition, we can
give precise and rigorous answers to all these questions, as we discuss in the following.

To discuss transport behavior near the percolation transition, consider a resistor
network corresponding to a random mixture of a metallic and and insulating com-
ponent. Let the conductivities of the respective components be σM (T ) and σI(T ),
both of which remain finite at T 6= 0, but with σM (0) = σo 6= o, while σI(0) = 0.
As the relative fraction x of the insulating component increases past the percolation
concentration xc, the overall conductivity of the network behaves as

σ(x, T = 0) ∼ (xc − x)µ, (1.38)

but such a sharp critical behavior emerges only at T = 0. At any finite temperature the
sharp percolation transition is smeared, similarly as when a symmetry breaking field
is turned on in conventional critical phenomena. The family of conductivity curves
generated by varying the percolation concetration x and temperature T at first glance
looks very similar to those expected at any quantum localization transition, where
sharp critical behavior also emerges only at T = 0.

How can we distinguish the two phenomena? The simples way to do so is by fo-
cusing on the behavior at the the critical concetration, where the finite temperature
conductivity is determined (Straley, 1977) by the conductivity of the insulating com-
ponents

σ(xc,T ) ∼ (σI(T ))u. (1.39)

The corresponding critical exponent u = 1/2 in d = 2, and u ≈ 0.7 in d = 3 (Stra-
ley, 1977). Therefore, one may first determine the location of the critical point by
extrapolating the conductivity to T = 0 from the metallic side. One should then plot
the temperature dependence at the critical point. At any quantum critical point, we
generally expect a powelaw temperature dependence, σc(T ) ∼ T (d−2)/x. In contrast,
the conductivity of any insulator typically takes a exponential form

σI(T ) ∼ exp{−(To/T )α} (1.40)

where α = 1 for simple activated behavior, α = 1/(d + 1) for Mott variable-range
hopping (Mott, 1990), or α = 1/2 for Efros-Shklovskii hopping (Shklovskii and Ėfros,
1984). Since the measured conductance is expected to be a power of σI , we conclude
that in presence of percolation, the conductivity will assume an insulating-like (ex-
ponential) temperature dependence on only in the insulating phase, but even at the
critical point. Thus, when the conductivity is plotted as a function of temperature on
a log-log scale, one will find a single straight line (indicated powerlaw behavior at the
critical concentration) in the case of quantum criticality, but no such curve will be
found in case of percolation.

One can be even more precise, and specify the precise scaling behavior around such
a percolation transition, which can be used to perform an alternative scaling analysis
and collapse the experimental curves in presence of percolation. In this case, we expect
(Stauffer and Aharoni, 1994) that the conductivity should assume the following scaling
form

σperc(δx, h, L) = b−(d−2+ζ)fperc(b
1/νδx, hbz

′
, b/L). (1.41)
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Here, δx = (xc − x) is the distance to the critical point, h = σI/σM plays the role of
the symmetry breaking field. Choosing b1/νδx = 1 and taking L→∞, we can write

σperc(δx, h) = δxµφperc(h/δx
νz′). (1.42)

The conductivity exponent

µ = (d− 2 + ζ)ν, (1.43)

which replaces Wegner scaling of the quantum case. Thus, to collapse all the exper-
imental curves, the argument of the scaling function should contain h ∼ σI(T ), and
not the temperature T . Working at the critical point (δx = 0), we similarly find the
exponential relation

u =
d− 2 + ζ

z′
. (1.44)

Finally, let us examine the finite size scaling behavior at h = 0. Working again at
the critical point, we find

σpercc (L) ∼ L−(d−2+ζ), (1.45)

so that the critical conductance

gpercc (L) ∼ L−ζ , (1.46)

revealing the physical meaning of the anomalous dimension ζ, which describes trans-
port on the critical percolation cluster. As we can see, the critical conductance vanishes
in the case of percolation, in contrast to the scaling theory of localization. We con-
clude that although percolation does display conventional powerlaw finite size scaling
at the critical point, a β-function description is not possible. This behavior reflects
the fact that d = 2 is not the lower critical dimension for percolation. The anomalous
dimension ζ is very generally expected to vanish at ordinary quantum critical points
describing conductor-insulator transitions. This result can be shown (Wen, 1992) to
very generally follow from charge conservation for any quantum criticality displaying
simple single-parameter scaling behavior. Although more complicated quantum sce-
narios are in principle possible, no microscopic quantum model has been identified to
date showing ζ 6= 0, or equivalently a lower critical dimension dlc < 2.

Perturbative quantum corrections in disordered metals. What is the physical mecha-
nism that invalidate’s Mott’s bound on impurity scattering? To understand this, recall
that Mott used Drude’s picture, where scattering processes from each impurity or de-
fect are assumed to independent and uncorrelated. This assumption is indeed justified
at weak enough disorder, where the Drude prediction is recovered as a leading order
contribution. For stronger disorder, multiple-scattering processes cannot be ignored,
and they provide the so-called “quantum corrections” to Drude theory. In good metals
the magnitude of the quantum corrections is generally small, modifying the conductiv-
ity by typically only a fraction of a percent. In this regime, the quantum corrections
can be systematically obtained as next-to-leading corrections within weak-disorder
perturbation theory for impurity scattering.
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Detailed calculations and classification of all such perturbative quantum corrections
has been carried out in the late 1970s and early 1980s, and are by now well understood
(Lee and Ramakrishnan, 1985). They consist of several additive terms,

σ = σo + δσwl + δσint,

corresponding to the so-called “weak localization” and “interaction” corrections. These
“hydrodynamic” corrections are dominated by infrared singularities, i.e., they acquire
non-analytic contributions from small momenta or equivalently large distances. Specif-
ically, the weak localization corrections take the form

δσwl =
e2

πd

[
l−(d−2) − L−(d−2)Th

]
, (1.47)

where l = vF τ is the mean free path, d is the dimension of the system, and LTh
is the length scale over which the wave functions are coherent. This effective system
size is generally assumed to be a function of temperature of the form LTh ∼ T p/2,
where the exponent p depends on the dominant source of decoherence through inelastic
scattering.

The situation is simpler in the presence of a weak magnetic field or magnetic im-
purities. Here the weak localization corrections are suppressed and the leading depen-
dence comes from the interaction corrections first discovered by Altshuler and Aronov
(Altshuler and Aronov, 1979)

δσint =
e2

}
(c1 − c2F̃σ)(Tτ)(d−2)/2. (1.48)

Here, c1 and c2 are constants, and F̃σ is an interaction amplitude.
In d = 3, this leads to a square-root singularity δσint ∼

√
T , and to a more singular

logarithmic divergence δσint ∼ ln(Tτ) in d = 2. These corrections are generally more
singular than the temperature dependence of the Drude term, and thus they are easily
identified experimentally at the lowest temperatures. Indeed, the T 1/2 law is commonly
observed (Lee and Ramakrishnan, 1985) in transport experiments in many disordered
metals at the lowest temperatures, typically below 500 mK.

Similar corrections have been predicted for other physical quantities, such as the
tunneling density of states and, more importantly, for thermodynamic response func-
tions. As in Drude theory, these quantities are not expected to be appreciably affected
by noninteracting localization processes, but singular contributions are predicted from
interaction corrections. In particular, corrections to both the spin susceptibility χ, and
the specific heat coefficient γ = CV /T were expected to take the general forms

δχ ∼ δγ ∼ T (d−2)/2,

again leading to logarithmic corrections in d = 2.
As in conventional Fermi liquid theories, these corrections emerged already when

the interactions were treated at the lowest, Hartree-Fock level, as done in the approach
of Altshuler and Aronov (Altshuler and Aronov, 1979). Higher order corrections in
the interaction amplitude were first incorporated by Finkelshtein (Finkel’stein, 1983;
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Finkel’stein, 1984), demonstrating that the predictions remained essentially unaltered,
at least within the regime of weak disorder. In this sense, Fermi liquid theory has been
generalized to weakly disordered metals, where its predictions have been confirmed in
numerous materials (Lee and Ramakrishnan, 1985).

Anderson transition in 2 + ε dimensions. The essential idea of these approaches fo-
cuses on the fact that a weak, logarithmic instability of the clean Fermi liquid arises in
two dimensions, suggesting that d = 2 corresponds to the lower critical dimension of
the problem. In conventional critical phenomena, such logarithmic corrections at the
lower critical dimension typically emerge due to long wavelength fluctuations associ-
ated with spontaneously broken continuous symmetry. Indeed, early work of Wegner
emphasized (Wegner, 1979) the analogy between the localization transition and the
critical behavior of Heisenberg magnets. It mapped the problem onto a field theo-
retical nonlinear σ-model and identified the hydrodynamic modes leading to singular
corrections in d = 2. Since the ordered (metallic) phase is only marginally unstable
in two dimensions, the critical behavior in d > 2 can be investigated by expanding
around two dimensions. Technically, this is facilitated by the fact that in dimension
d = 2+ε the critical value of disorder W for the metal-insulator transition is very small
(Wc ∼ ε), and thus can be accessed using perturbative renormalization group (RG)
approaches in direct analogy to the procedures developed for Heisenberg magnets.
In this approach (Schaffer and Wegner, 1980; Abrahams, Anderson, Licciardello and
Ramakrishnan, 1979), conductance is identified as the fundamental scaling variable
associated with the critical point, which is an unstable fixed point of the RG flows.
This RG calculation provides a scaling description predicting how the conductance
depends on the system size, and thus produces the desired β-function in d = 2 + ε di-
mensions. To leading order in ε the resulting critical exponent ν is predicted (Schaffer
and Wegner, 1980; Abrahams, Anderson, Licciardello and Ramakrishnan, 1979) to be

ν−1 = ε+O(ε2). (1.49)

When this result is extrapolated to three dimensions (ε = 1), the conductivity expo-
nent

µ = 1 +O(ε). (1.50)

This early prediction was initially widely acclaimed as a plausible theoretical ex-
planation for the critical behavoior commonly observed in several systems (e.g. com-
pensated doped semiconductors, see below), where µ ≈ 1. From the theoretical side,
this result was believed to be exact from more then ten years, since very tedious sub-
sequent work established that higher order corrections to ν, when evaluated to second
and even third order in ε all vanished! Very surprisingly, a tour-de-force calculation
by Hikami (to O(ε5)) succeeded in finding nonvanishing correction to this exponent,
giving an estimate

µ ≈ 0.67 (1.51)

in three dimensions. This calculation demonstrated that the exact value (µ ≈ 1.58 for
the “orthogonal ensemble” describing ordinary potential scattering) lies hopelessly far
from the estimates based on the ε-expansion.
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This imporant result indicates a potentially serious shortcoming of any such per-
turbative RG schemes. As in ordrinary (magnetic) critical phenomena, the ε-expansion
around d = 2 seems to have extremely bad convergence properties (Castilla and
Chakravarty, 1993) when extrapolated to d = 3, making it a virtually useless the-
oretical tool for making quantitative estimates for the critical exponents. The reason
for generally poor convengence of d = 2 + ε expansions is at present not fully un-
derstood, although related work (Kamal and Murthy, 1993) suggested that it reflects
an inability to incorporate topological excitations (“hedgehog” configurations for the
d = 3 Heisenberg model they studied) within any perturbative scheme. This behav-
ior should be contrasted to that familar from the 4 − ε RG approaches in standard
critical phenomena. Here, a consistent description of the critical point is found even
at the mean-field level, which becomes exact for d > duc = 4. The fluctuation effects
described by RG flows only provide the corrections to mean-field values for the critical
exponents, and in general proved to have much superior convenrgence properties, often
allowing surprisingly accurate estimates when extrapolated to d = 3. Interestingly, the
complete lack of spatial correlations within mean-field theory allows for all spin config-
urations to be considered on equal footing within the 4−ε scheme , including both the
smooth configurations described by perturbative methods, and the topological defects
which they ignore.

Returning to metal-insulator transitions, one may speculate that the difficulties
with peturbative approaches reflect that here the very existence of the phase transition
emerges only due to fluctuation corrections; no transition is found at the mean-field
(saddle-point) level describing Drude-Boltzmann theory. Developing a more appriate
mean-field description of the MIT thus appears as one of the most promising directions
for future work.

Generalized Fermi liquid theory for disordered electrons. In the mid 1980s, these
ideas were extended with a great deal of effort in the formulation of a scaling theory of
interacting disordered electrons by Finkelshtein (Finkel’stein, 1983) and many followers
(Castellani, Castro, Lee and Ma, 1984; Belitz and Kirkpatrick, 1994). While initially
shrouded by a veil of quantum field theory, these theories were later given a simple
physical interpretation in terms of Fermi liquid ideas (Castellani, Kotliar and Lee,
1987; Kotliar, 1987) for disordered electrons. Technical details of these theories are of
considerable complexity, and the interested reader is referred to the original literature
(Finkel’stein, 1983; Finkel’stein, 1984; Castellani, Castro, Lee and Ma, 1984; Belitz and
Kirkpatrick, 1994). Here we just summarize the principal results, in order to clarify
the constraints imposed by these Fermi liquid approaches.

Within the Fermi liquid theory for disordered systems (Castellani, Kotliar and
Lee, 1987; Kotliar, 1987), the low energy (low temperature) behavior of the system is
characterized by a small number of effective parameters, which include the diffusion
constant D, the frequency renormalization factor Z, and the singlet and triplet inter-
action amplitudes γs and γt. These quantities can also be related to the corresponding
quasi-particle parameters which include the quasi-particle density of states

ρQ = Zρo, (1.52)

and the quasi-particle diffusion constant
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DQ = D/Z ∼ D/ρQ. (1.53)

Here, ρo is the “bare” density of states which describes the noninteracting electrons. In
the absence of interactions, the single-particle density of states is only weakly modified
by disorder and remains noncritical (finite) at the transition (Schaffer and Wegner,
1980).

Using these parameters, we can now express the thermodynamic response functions
as follows. We can write the compressibility

χc =
dn

dµ
= ρQ[1− 2γs], (1.54)

the spin susceptibility
χs = µ2

BρQ[1− 2γt], (1.55)

and the specific heat
CV = 2π2ρQT/3. (1.56)

In addition, we can use the same parameters to express transport properties such as
the conductivity

σ =
dn

dµ
Dc = ρQDQ, (1.57)

as well as the density-density and spin-spin correlation functions

π(q, ω) =
dn

dµ

Dcq
2

Dcq2 − iω
χs(q, ω) = χs

Dsq
2

Dsq2 − iω
. (1.58)

Here, we have expressed these properties in terms of the spin and charge diffusion
constants, which are defined as

Dc =
D

Z(1− 2γs)
; Ds =

D

Z(1− 2γt)
. (1.59)

Note that the quantity D is not the charge diffusion constant Dc that enters the
Einstein relation, Eq. (1.57). As we can write σ = ρoD, and since ρo is not critical
at any type of transition, the quantity D (also called the “renormalized diffusion
constant”) has a critical behavior identical to that of the conductivity σ. We also
mention that the quasi-particle diffusion constant DQ = D/Z has been physically
interpreted as the heat diffusion constant.

Weak-coupling renormalization group approach of Finkelshtein. The Fermi liquid
relations provide constraints relating different Landau parameters, but they cannot
predict their specific values, or how should they behave in the vicinity of the metal-
insulator transition. In practical applications of these approaches to disordered sys-
tem one assumes that the Landau parameters characterizing the clean Fermi liquid
are known (say from experiments), and then examines how they are modified when
impurities are added to the system. Precise prediction for these impurity effects have
been obtained in the limit of weak disorder, where perturbative “quantum corrections”
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to all quantities have been calculated (Lee and Ramakrishnan, 1985). As in the non-
interacting limit, singular logarithmic corrections are found in d = 2, signaling that
a systematic weak coupling approach can be developed, to investigate the instabil-
ity of the metallic phase under impurity scattering. While conceptually simple and
transparent, practical calculations to implement this program proved of considerable
complexity, even within the framework of weak coupling approaches.

Perturbative renormalization group calculations (Finkel’stein, 1983; Finkel’stein,
1984; Castellani, Castro, Lee and Ma, 1984; Belitz and Kirkpatrick, 1994) based on the
2+ε expansion have been used to make explicit predictions for the values of the critical
exponents for different universality classes. The details of this formulation will not be
elaborated here, as it has been discussed in great detail in several excellent reviews.
Instead, we comment on the physical content of these theories, and indicate what
aspects of the problem may and which may not be addressed using this framework.

Physical content of Finkelstein’s theory. The mathematical complexity of of Finkel-
stein’s formalism seems, at first sight, to shroud its physical content with a veil of
mystery, and render it difficult to comprehent to all byt the very few specialists work-
ing in the field. Later works (Castellani, Castro, Lee and Ma, 1984; Castellani, Kotliar
and Lee, 1987; Zala, Narozhny and Aleiner, 2001), however, succeeded to rederive
most of Finkelstein’s results using standard (albeit much less elegant) diagrammatic
approaches, allowing for a simple and transparent physical interpretation. The main
points include:

• This theory describes a disordered Fermi liquid, specifically the scale-dependence
of the disorder-modified Landau parameters.

• As in the original scaling theory of localization, the transition is identified as an
unstable fixed point for the conductance. If the interaction amplitudes retain finite
(albeit renormalized) values at the fixed point, then the scaling scenario is essen-
tially of the same form as for noninteracting localization. This behavior is found
(Belitz and Kirkpatrick, 1994) for all the universality classes with broken time
reversal invariance (BTRI): in presence of an external magnetic field, magnetic
impurity scattering, or presence of spin-orbit scattering.

• The metallic phase, as in any Fermi liquid, retains the same qualitative behavior
at T = 0 as a weakly disordered systems of noninetracting electrons. In particular,
this means that all thermodynamic quantities (e.g. the spin susceptibility χ or the
Sommerfeld coefficient γ = C/T ) remain finite away from the transition.

• The scaling hypothesis, which is built into this formalism, guarantees that the
low temperature behavior of all quantities is qualitatively identical within the
each (metallic or insulating) phase. For example, the leading low temperature√
T corrections, first predicted by using weak-disorder perturbation theory of

Altshuler and Aronov, should retain their form throughout the metallic phase.

These results may lead - at least in principle - to a mathematically consistent descrip-
tion of the metal-insulator transition in d = 3. In two dimensions, where Anderson
localization is expected to distroy any metallic phase, the situation is more subtle. An
especially interesting and still controversial situation is found for the “generic” model,
i.e. in absence of BTRI perturbations. Here, a qualitatively new behavior is found due
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to interaction effects. The triplet interaction amplitude γt is found to grow withour
limits under rescaling (i.e. as T is lowered), even at infinitesimal disorder (Finkel’stein,
1983; Finkel’stein, 1984). As a result, the “interaction” correction for the conductivity
(which to leading order is proportional to γt) is found to produce an “antilocalization”
effect, which is predicted to “overcome” the usual weak localization term responisble
for the instability of the d = 2 metallic phase. From this point of view, Finkelstein’s
results open a consistent possibility that interactions may be able to stabilize the
metallic phase at sufficiently weak disorder, thus leading to a sharp metal-insulator
transition in d = 2.

Most remarkaby, recent experiments on a variety two-dimensional electron gases
have revealed behavior quite suggestive of the existence of precisely such a transition
(Abrahams, Kravchenko and Sarachik, 2001). This contriversial phenomenon, first dis-
covered by Kravchenko in 1995 (Kravchenko, Mason, Bowker, Furneaux, Pudalov and
D’Iorio, 1995), has reignited interest in this fundamental question. Its many facets
continue to facinate theorists and experimentalists alike, but much still remains to be
understood, as described in more detail in Chap. 2. Even from the purel theoretical
point of view, however, the physical interpretation of what precisely happens in a 2D
weakly disordered Fermi liquid still remains puzzling and controversial. The main is-
sue is how to understand the singular behavior of the triplet interaction amplitude γt,
which is found to grow without bounds at low temperature. In disordered Fermi liquid
it indicates enhanced spin susceptibility χ ∼ γ

t
, so this result may signal some kind

of magnetic instability of the metallic phase. Various interpretations have been pro-
posed ranging from disorder-induced ferromagnetism (Belitz and Kirkpatrick, 1994),
to disorder-induced local moment formation (Castellani, Castro, Lee and Ma, 1984;
Milovanović, Sachdev and Bhatt, 1989; Paalanen, Graebner, Bhatt and Sachdev, 1998;
Dobrosavljević, Kirkpatrick and Kotliar, 1992). While some progress has recently been
made by Punnoose and Finkelstein (see Chapter 4), using large-N methods , the issue
remains controversial and chalenging.

Difficulties with runaway RG flows. From a more general perspective, any solution
with such “runaway” coupling constant immediately brings into question the credibil-
ity of perturbative RG approaches. It is interesting to recall that similar situations have
been encoutered in several other problems, where disorder effects in interacting sys-
tems have proved difficult to describe using perturbative RG methods. The first such
example is the famed random-field Ising model (RFIM) (Imry and Ma, 1975), where
a perturbative arguments of Parisi and Sourlas (PS) suggested (Parisi and Sourlas,
1979) that the critical behavior of the disorder problem can be mapped to the cor-
responding clean problem in d − 2 dimensions. Because the clean Ising model does
not order in d = 1, this work suggested that infinitesimal disorder would be sufficient
to destroy the ordered phase even in d = 3. Later rigorous by Imbrie (Imbrie, 1984)
rigorously showed that a finite temperature ordering survives sufficiently weak disor-
der in d = 3, thus invalidating the PS mechanism, which was claimed to hold to all
orders in perturbation theory. The puzzle was soon resolved by more careful functional
renormalization group methods of Daniel Fisher (Fisher, 1985), who showed that the
perturbative fixed point of PS proves unstable, leading to “runaway” RG flows. Subse-
quent work (Mezard and Young, 1992; Mezard and Monasson, 1994; C.De Dominicis,
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1995) found evidence that this reflects the proliferation of metastable states in the
RFIM, a phenomenon which proves “invisible” in perturbative treatment. Interest-
ingly, much later work (Kirkpatrick and Belitz, 1994; Belitz and Kirkpatrick, 1995)
attempted a non-pertubative (albeit uncontrolled) solution of Finkelstein’s nonlinear
σ-model by proposing a new saddle point solution, and a RG approach based on a
6 − ε expansion, finding RG flows of a structure very similar to the PS theory for
the RFIM. The authors interpreted these results as evidence that metastability and
non-perturbative glassy effects cannot be ignored within the Finkelstein’s model any
more then they could for the RFIM.

T 

Bare disorder potential 

Screened disorder  
potential 

Thermal  
activation Inelastic  

scattering 

Fig. 1.15 In the disordered Fermi liquid picture, the leading low-temperaure dependence

of transport reflect elastic scattering off a renormalized, but temperature-dependent random

potential (dashed line). At low temperatures (bottom), the potential wells “fill-up” with elec-

trons; in presence of repulsive (Coulomb) interactions, the screened (renormalized) potential

has reduced amplitude (dashed line), leading to effectively weaker disorder. As the temper-

ature increases (top), electrons thermally activate (shown by arrows) out of the potential

wells, reducing the screening effect. This physical mechanism, which operates both in the

ballistic and in the diffusive regime (Zala, Narozhny and Aleiner, 2001), is at the origin of all

“quantum corrections” found within the Fermi liquid picture. It is dominant, provided that

inelastic electron-electron scattering can be ignored. While this approximation is well justi-

fied in good metals, inelastic scattering (star symbol) is considerably enhanced in presence

of strong correlation effects, often leading to disorder-driven non-Fermi liquid behavior (Mi-

randa and Dobrosavljevic, 2005) and electronic Griffithe phases (Miranda and Dobrosavljević,

2001; Tanaskovic, Dobrosavljevic and Miranda, 2005; Andrade, Miranda and Dobrosavljevic,

2009).
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Yet another example of non-perturbative disorder effects has been found in recent
studies of Hertz-Millis (Hertz, 1976; Millis, 1993; Sachdev, 2011) models for itiner-
ant quantum criticality. Here early works attempted a perturbative RG treatment for
weak disorder, only to find runaway flows. Later works by Vojta and Hoyos (Hoyos,
Kotabage and Vojta, 2007), which used a complementary “strong-disorder renormal-
ization group” (SDRG) methods, deminstrated that for these models disorder com-
pletely changes the physical nature of quantum criticality, leading to so-called “infinite-
randomness fixed point” (IRFP) behavior (Miranda and Dobrosavljevic, 2005; Vojta,
2006). In such cases, the behavior of the system is deminated by rare disorder realiza-
tions, leading to the formation of Quantum Griffiths Phases (QGP) surrounding the
critical point.

We should stress that these non-perturbative disorder effects do not bring into
question the general ideas of scaling, but they they do seem to raise concerns about the
application of weak coupling RG methods. In cases such as the IRFP universality class,
the renormalized effective action describing the critical point assumes a qualitatively
different form then that of the clean system. This simple fact makes it abundantly clear
how and why perturbative methods may fail in a most dramatic fashion. Whether a
similar mechanism resolves the puzzles identified by the perturbative solution of the
Finkelstein model remains to be established by future work.

Conceptual limitations of the disordered Fermi liquid picture. Despite a great deal of
effort invested in such calculations, the predictions of the perturbative RG approaches
have met only limited success in explaining the experimental data in the critical region
of the metal-insulator transition. We should emphasize, though, that limitations asso-
ciated with these weak-coupling theories do not invalidate the potential applicability
of Fermi liquid ideas per se. Having this in mind, it is also important to understand
the fundamental limitations of the disordered Fermi liquid picture which is the un-
derpinning of Finkelstein’s field theory. The important physical conditions implicitly
assumed by this formulation include:

• It describes leading low-temperature excitations, which are adiabatically con-
nected to a noninteracting (but disordered) electronic system. These excitations,
therefore, assume fermionic character. Other (spin or charge) collective excitations
are assumed to play a subleading role in this temperature regime.

• The fermionic excitations are assumed to be sufficiently dilute, such that in-
elastic electron-electron scattering processes can be neglected. The leading low
temperature corrections then reflect elastic scattering processes on a static, but
temperature-dependent renormalized disorder potential. Upon disorder averaging,
this can produce different temperature dependence in the diffusive and ballistic
regimes. As explained in recently by Zala et al. (Zala, Narozhny and Aleiner,
2001), however, the basic physical mechanism for all these corrections is one and
the same (Fig. 1.15). We should emphasize that these processes dominate only at
sufficiently low temperatures, typically being only a small fraction of the Fermi
temperature. In presence of strong electronic correlations, the “coherence tem-
perature” T ∗ below which the Fermi liquid picture applies, may be very low;
a good example are so-called “heavy-fermion” systems, where T ∗ � TF and a
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very broad incoherent metallic regime is found. In presence of disorder, the co-
herence temperature T ∗ may be further reduced or even driven to zero (Miranda
and Dobrosavljevic, 2005). This situation is illustrated in certain exactly solvable
models with strong correlation and disorder (Dobrosavljević and Kotliar, 1993;
Tanasković, Miranda and Dobrosavljević, 2004), which can be exatly solved in the
limit of large coordination. Here strong disorder fluctuations stabilize “non-Fermi
liquid” metallic behavior at any non-zero temperature.

• The standard formulation of the disordered Fermi liquid theory is derived at
weak disorder, where the electrons are well delocalized accross the entire sample.
The Landau interaction amplitude are assumed to be self-averaging, and are thus
replaced by their averaged values. At stronger disorder, very strong spatial flauc-
tuations may emerge (Miranda and Dobrosavljevic, 2005), so that the interaction
effects may be much more pronounced in certain regions of the sample. These
effects are most important in strongly correlated electronic systems, where the as-
sumption of self-averaging may completely break down, leading to the formation
of “electronic Griffiths phases” (Miranda and Dobrosavljević, 2001; Tanaskovic,
Dobrosavljevic and Miranda, 2005; Andrade, Miranda and Dobrosavljevic, 2009).
If this happens, then the simiplified version of disordered Fermi liquid theory may
prove insufficient or even misleading.

• The Fermi liquid pictures assumes a unique ground state, implicitly ignoring the
possibility metastable states resulting from the competition of disorder and the
long-range Coulomb interactions. The associated electron glass behavior (Pastor
and Dobrosavljević, 1999) is a well establised feature of disordered insulators, but
its possible role in the critical regime (Dobrosavljević, Tanasković and Pastor,
2003b) has been ignored by the weak coupling approaches.

1.3.3 Order-parameter approaches to interaction-localization

Need for an order-parameter theory: experimental clues. In conventional critical phe-
nomena, simple mean-field approaches such as the Bragg-Williams theory of mag-
netism, or the Van der Waals theory for liquids and gases work remarkably well -
everywhere except in a very narrow critical region (Goldenfeld, 1992). Here, effects
of long wavelength fluctuations emerge that modify the critical behavior, and its de-
scription requires more sophisticated theoretical tools, based on renormalization group
(RG) methods. A basic question then emerges when looking at experiments: is a given
phenomenon a manifestation of some underlying mean-field (local) physics, or is it
dominated by long-distance correlations, thus requiring an RG description? The an-
swer for conventional criticality is well know, but how about metal-insulator transi-
tions? Here the experimental evidence is much more limited, but we would like to
emphasize a few well-documented examples which stand out.

• Doped semiconductors such as Si:P. These are the most carefully studied (Shklovskii
and Ėfros, 1984) examples of the MIT critical behavior. Here the density-dependent
conductivity extrapolated to T = 0 shows sharp critical behavior (M. A. Paala-
nen, 1991) of the form σ ∼ (n − nc)µ, where the critical exponent µ ≈ 1/2 for
uncompensated samples (half-filled impurity band), while dramatically different
µ ≈ 1 is found for heavily compensated samples of Si:P,B, or in presence of strong
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magnetic fields. Most remarkably, the dramatically differences between these cases
is seen over an extremely broad concentration range, roughly up to several times
the critical density. Such robust behavior, together with simple (apparent values
for the critical exponents, seems reminiscent of standard mean-field behavior in
ordinary criticality.

Fig. 1.16 Critical behavior of the conductivity for uncompensated Si : P and compensated

Si:P,B (M. A. Paalanen, 1991). The conductivity exponent µ ≈ 1/2 in absence of compensa-

tion, while µ ≈ 1 in its presence. Clearly distinct behavior is observed in a surprisingly broad

range of densities, suggesting mean-field scaling. Since compensation essentially corresponds

to carrier doping away from a half-filled impurity band (Shklovskii and Ėfros, 1984), it has

been suggested (Lee and Ramakrishnan, 1985) that the difference between the two cases may

reflect the role of strong correlations.

• Two-dimensional metal-insulator transitions. Signatures of a remarkably sharp
metal-insulator transition has also been observed (Kravchenko, Mason, Bowker,
Furneaux, Pudalov and D’Iorio, 1995; Popović, Fowler and Washburn, 1997; Abra-
hams, Kravchenko and Sarachik, 2001) in several examples of two-dimensional
electron gases (2DEG) such as silicon MOSFETs. While some controversy re-
garding the nature or even the driving force for this transition remains a sub-
ject of intense debate, several experimental features seem robust properties com-
mon to most studied samples and materials. In particular, various experimental
groups have demonstrated (Kravchenko, Mason, Bowker, Furneaux, Pudalov and
D’Iorio, 1995; Popović, Fowler and Washburn, 1997) striking scaling of the resis-
tivity curves in the critical region, which seems to display (Simonian, Kravchenko
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and Sarachik, 1997) remarkable mirror symmetry (“duality”) (Dobrosavljević,
Abrahams, Miranda and Chakravarty, 1997) over a surprisingly broad interval of
parameters. In addition, the characteristic behavior extends to remarkably high
temperatures, which are typically comparable the Fermi temperature (Abrahams,
Kravchenko and Sarachik, 2001). One generally does not expect a Fermi liquid pic-
ture of diluted quasiparticles to apply at such “high energies”, or any correlation
length associated with quantum criticality to remain long.

Fig. 1.17 The resistivity curves (left panel) for a two-dimensional electron system in silicon

(Kravchenko, Mason, Bowker, Furneaux, Pudalov and D’Iorio, 1995) show a dramatic met-

al-insulator crossover as the density is reduced below nc ∼ 1011cm−2. Note that the system

has “made up its mind” whether to be a metal or an insulator even at surprisingly high

temperatures T ∼ TF ≈ 10K. The right panel displays the scaling behavior which seems

to hold over a comparable temperature range. The remarkable “mirror symmetry” (Simo-

nian, Kravchenko and Sarachik, 1997) of the scaling curves seems to hold over more then

an order of magnitude for the resistivity ratio. This surprising behavior has been interpreted

(Dobrosavljević, Abrahams, Miranda and Chakravarty, 1997) as evidence that the transition

region is dominated by strong coupling effects characterizing the insulating phase.
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• High temperature anomalies - Mooij correlation. Surprisingly similar metal-insulator
crossover is seen at elevated temperatures in several systems (Lee and Ramakrish-
nan, 1985) where the MIT is driven by increasing the level of disorder at fixed elec-
tron density. This behavior, first identified by Mooij (Mooij, 1973), has recently
been studied in phase change materials (Siegrist, Jost, Volker, Woda, Merkel-
bach, Schlockermann and Wuttig, 2011). Here, the temperature coefficient of the
resistivity (TCR) is found to change sign, indicating the crossover from metallic
(dρ/dT > 0) to insulating(-like) (dρ/dT > 0) transport, around the values of the
resistivity close to the “Mott limit” ρc = 1/σmin (Fig. 1.18). This behavior is
consistent with the early ideas of Mott, suggesting that in metals, as temperature
is increased, the resistivity should display resistivity saturation (Fisk and Webb,
1976) as soon as the mean-free path approaches the atomic scale. Although rem-
iniscent to what is seen in (d = 2) silicon MOSFETs, this behavior observed in
bulk (d = 3) systems is inconsistent with the expectations based on the scaling

theories of localization (e.g. a divergent critical resistivity ρc(T ) ∼ 1/T
d−2
z ). Since

any concievable coherence length must be short at such elevated temperatures,
local (incoherent) scattering processes are likely to be at the origin of this puz-
zling behavior. This should be contrasted to the well-known weak localization
and interaction corrections in a disordered Fermi liquid, processes dominated by
coherent miltiple-scattering processes at long lengthscales.

Fig. 1.18 High-temperature transport in the disorder-driven metal-insulator transition re-

gion in recently discovered “phase change” materials (Siegrist, Jost, Volker, Woda, Merkel-

bach, Schlockermann and Wuttig, 2011) . Here disorder is tuned at fixed carrier concentration

by partially annealing the parent amorphous insulator. The change of the sign of TCR is found

to occur precisely at the “separatrix” coinciding with the estimated Mott limit.
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• High temperature violations of the Mott limit. Examples of metallic (dρ/dT > 0)
transport with resistivities dramatically exceeding the Mott limit have been re-
ported only in sufficiently clean systems not too far from the Mott insulating state.
This curious behavior was first noted shortly after the discovery of cuprate super-
conductors (Hussey, Takenaka and Takagi, 2004), and was quickly interpreted as a
“smoking gun” of non-Fermi liquid physics and strong correlation effects. Further
examples have been documented in organic Mott systems (Limelette, Wzietek,
Florens, Georges, Costi, Pasquier, Jerome, Meziere and Batail, 2003b) and tran-
sition metal oxides such as V2O3 (Limelette, Georges, Jerome, Wzietek, Metcalf
and Honig, 2003a). In all these cases, the violation of the Mott limit was found
at temperatures exceeding the Fermi-liquid coherence scale T ∗, and was observed
to coincide with the suppression of the corresponding Drude peak in the optical
conductivity. Similarly to resistivity saturation, such “bad metal” behavior seems
to emerge only in the high temperature incoherent regime, where local scattering
processes dominate.

Fig. 1.19 Transport behavior in a strongly correlated metal

κ − (BETD − TTF )2Cu[N(CN)2]Cl, approching the pressure-driven Mott transition.

Here, Fermi liquid transport (ρ ∼ T 2) is found only at the lowest temperatures. The unusual

transport behavior at higher temperatures, displaying pronounced resistivity maxima well

exceeding the Mott limit, has been quantitatively explained using DMFT theories (Limelette,

Wzietek, Florens, Georges, Costi, Pasquier, Jerome, Meziere and Batail, 2003b; Radonjic,

Tanaskovic, Dobrosavljevic and Haule, 2010).
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All these experiments taken together provide strong hints that in many systems
of current interest an appropriate mean-field description is what is needed. It should
provide the equivalent of a Van der Waals equation of state, for the metal-insulator
transition problem of disordered interacting electrons. Unfortunately, such a theory
has long been elusive, primarily due to a lack of a simple order-parameter formulation
for this problem. Very recently, an alternative approach to the problem of disordered
interacting electrons has been developed, based on dynamical mean-field (DMFT)
methods (Georges, Kotliar, Krauth and Rozenberg, 1996). This formulation is largely
complementary to the scaling approach, and has already resulting in several striking
predictions. In the following, we briefly describe this method, and summarize the main
results that have been obtained so far.

The DMFT physical picture. The main idea of the DMFT approach is in princi-
ple very close to the original Bragg-Williams (BW) mean-field theories of magnetism
(Goldenfeld, 1992). It focuses on a single lattice site, but replaces (Georges, Kotliar,
Krauth and Rozenberg, 1996) its environment by a self-consistently determined “ef-
fective medium”, as shown in Fig. 1.3.

Fig. 1.20 In dynamical mean-field theory, the environment of a given site is represented

by an effective medium, represented by its “cavity spectral function” ∆i(ω). In a disordered

system, ∆i(ω) for different sites can be very different, reflecting Anderson localization effects

(Anderson, 1958).

In contrast to the BW theory, the environment cannot be represented by a static
external field, but instead must contain the information about the dynamics of an
electron moving in or out of the given site. Such a description can be made precise by
formally integrating out all the degrees of freedom on other lattice sites. In presence
of electron-electron interactions, the resulting local effective action has an arbitrarily
complicated form. Within DMFT (Georges, Kotliar, Krauth and Rozenberg, 1996),
the situation simplifies, and all the information about the environment is contained
in the local single particle spectral function ∆i(ω). The calculation then reduces to
solving an appropriate quantum impurity problem supplemented by an additional self-
consistency condition that determines this “cavity function” ∆i(ω).

The precise form of the DMFT equations depends on the particular model of
interacting electrons and/or the form of disorder, but most applications (Georges,
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Kotliar, Krauth and Rozenberg, 1996) to this date have focused on Hubbard and
Anderson lattice models. The approach has been very successful in examining the
vicinity of the Mott transition in clean systems, and it has met spectacular successes
in elucidating various properties of several transition metal oxides, heavy fermion
systems and Kondo insulators (Kotliar, Savrasov, Haule, Oudovenko, Parcollet and
Marianetti, 2006) .

The central quantity in the DMFT approach is the local “cavity” spectral function
∆i(ω). From the physical point of view, this object essentially represents the available
electronic states to which an electron can “jump” on its way out of a given lattice site.
As such, it provides a natural order parameter description for the MIT (Dobrosavljević
and Kotliar, 1998). Of course, its form can be substantially modified by either the
electron-electron interactions or disorder, reflecting the corresponding modifications
of the electron dynamics. According to Fermi’s Golden Rule, the transition rate to a
neighboring site is proportional to the density of final states - leading to insulating
behavior whenever ∆i(ω) has a gap at the Fermi energy. In the case of a Mott transition
in the absence of disorder, such a gap is a direct consequence of the strong on-site
Coulomb repulsion, and is the same for every lattice site.

(a)
Metal

Frequency

∆
 i 

(ω
)

Frequency

Mott
Insulator

(b)
Anderson
Insulator

(c)

Frequency

Fig. 1.21 The local cavity spectral function ∆i(ω) as the order parameter for the MIT. In

a metal (a) there are available electronic states near the Fermi level (dashed line) to which

an electron from a given site can delocalize. Both for a Mott insulator (b) and the Anderson

insulator (c) the Fermi level is in the gap, and the electron cannot leave the site. Note that

the averaged spectral function (dotted line in (c)) has no gap for the Anderson insulator, and

thus cannot serve as an order parameter.

The situation is more subtle in the case of disorder-induced localization, as first
noted in the pioneering work of Anderson (Anderson, 1958). Here, the average value of
∆i(ω) has no gap and thus cannot serve as an order parameter. However, as Anderson
noted a long time ago, “...no real atom is an average atom...” (Anderson, 1978). Indeed,
in an Anderson insulator, the environment “seen” by an electron on a given site can
be very different from its average value. In this case, the typical “cavity” spectral
function ∆i(ω) consists of several delta-function (sharp) peaks, reflecting the existence
of localized (bound) electronic states (Fig. 1.21). Thus a typical site is embedded in an
environment that has a gap at the Fermi energy - resulting in insulating behavior. We
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emphasize that the location and width of these gaps strongly vary from site to site.
These strong fluctuations of the local spectral functions persist on the metallic side of
the transition, where the typical spectral density ∆typ = exp < ln(∆i) > can be much
smaller than its average value (Dobrosavljević, Pastor and Nikolić, 2003a). Clearly,
a full distribution function is needed (Anderson, 1978) to characterize the system.
The situation is similar as in other disordered systems, such as spin glasses (Mézard,
Parisi and Virasoro, 1986). Instead of simple averages, here the entire distribution
function plays a role of an order parameter, and undergoes a qualitative change at the
phase transition. The DMFT formulation thus naturally introduces self-consistently
defined dynamical order parameters, that can be utilized to characterize the qualitative
differences between various phases. In presence of disorder, these order parameters
have a character of distribution functions, which change their qualitative form as we
go from the normal metal to the non-Fermi liquid metal, to the insulator.

Physical content of DMFT approaches. DMFT and its various generalizations are
designed to capture strong but local correlation effects. Here we will not discuss the
technical details on these approaches, which will be discussed, in some detail, in Chap-
ter 6. Instead, we give a brief summary of the advantages and the limitations of the
existing DMFT theories, in applications to strongly correlated electronic systems with
and without disorder.

• The approach is formally exact in the limit of large coordination, but in gen-
eral it represents a “conserving” approximation scheme (Kotliar, Savrasov, Haule,
Oudovenko, Parcollet and Marianetti, 2006), in the sense of Baym and Kadanoff.
Although it reproduces Fermi liquid behavior of metals at low temperature, it
is not restricted to this regime. In fact, DMFT is more accurate (essentially ex-
act) in the high-temperature incoherent regime, because this is where any spatiall
correlations ignored by DMFT become negligible.

• The local correlation effects are described through the local self-energies Σi(ω),
defining both the quasiparticle effective mass m∗ = 1 − (∂Σi/∂ω)ω=0, and the
inelastic scattering rate ~τ−1in (ω) = −ImΣi(ω = 0). In presence of disorder these
quantities display spatial fluctuations (Miranda and Dobrosavljevic, 2005), and
need to be characterized with appropriate distribution functions.

• DMFT cannot be used to properly describe those phenomena which are dominated
by long-wavelength spatial fluctuations. It cannot provide a description of anoma-
lous dimensions of various physical quantities within the narrow “Ginzburg” re-
gion around a critical point, at least for ordinary criticality. On the other hand,
recent work suggested the possibility of “Local Quantum Criticality” (Si, Ra-
bello, Ingersent and Smith, 2001), where DMFT-like approaches may represent
the proper description.

We should stress that the local dynamical description description provided by
DMFT is a feature built-in from the start. How broad is the range of parameters
and models where this approximation is valid is not obvious or precisely known at this
time, despite the many successful applications (Kotliar, Savrasov, Haule, Oudovenko,
Parcollet and Marianetti, 2006) of DMFT to various experimental systems. Interest-
ingly, very recent work based on “holographic duality” (Sachdev, 2010; McGreevy,
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2010) ideas borrowed from super-string theory suggests that certain strong-coupling
classes of QCPs may exist, having strictly local character. If these arguments prove
correct, they may provide fundamental insight into why and where the local ideas
implied by DMFT can be expected to apply, and in which cases the do not.

Applications and extensions of DMFT. The first practical application of DMFT has
focused at the Mott transition in a single-band Hubbard model, sheding new light on
systems ranging from transition metal oxides to organic Mott systems. Even in this
simplest “single-site” version, the method can be easily extended to multi-band and
multy-orbital models, features that are of key importance in materials such as rare-
earth intermetallics (heavy fermion systems) and the recetnly discovered familty of
iron-pnictides (Basov and Chubukov, 2011). The technical difficulties in applying the
methods to multi-orbital systems has pleagued early studies, essentially due to lack
of a reliable “quantum impurity solver” for DMFT equations. Very recent progress
based on “continuos time quantum Monte Carlo” methods (Gull, Millis, Lichtenstein,
Rubtsov, Troyer and Werner, 2011) has provided a practical and efficient solution in
many cases, opening avenues for applications to many materials.

Other complications surrounded efforts to dovetail the DMFT methods for strong
correlation with first-principle density-functional electronic structure methods (DFT).
Considerable efforts have been invested in this program (Kotliar, Savrasov, Haule,
Oudovenko, Parcollet and Marianetti, 2006), and over the last few years combined
density functional and DMFT studies have bloomed into a veritable industry, result-
ing in impressive and accurate first-principles descriptions of many strongly correlated
materials. Finally, effects of inter-site correlations have also been a focus of much
recent work, leading to various “cluster” generalizations of DMFT, resulting in sub-
stantial new insight (Haule and Kotliar, 2007; Yang, Fotso, Su, Galanakis, Khatami,
She, Moreno, Zaanen and Jarrell, 2011) in systems such as high Tc cuprate super-
conductors. Different aspect of these theories have been discussed in detail in several
recent reviews (Maier, Jarrell, Pruschke and Hettler, 2005; Kotliar, Savrasov, Haule,
Oudovenko, Parcollet and Marianetti, 2006). In the following we focus on applications
of DMFT to disordered systems (Miranda and Dobrosavljevic, 2005), and list the phys-
ical phenomena and regimes that have found a natural description within the DMFT
framework, but which remain difficult to address using complementary approaches.

The simplest DMFT theories focus on the dynamical effects of local interactions,
while describing the environment of a given site as an average “effective medium”.
In presence of disorder, this formulation reduces (Dobrosavljević and Kotliar, 1994)
to the well-known “coherent potential approximation” (CPA) in the noninteracting
limit. This theory, while providing a reasonable description of disorder-averaged single-
particle spectral functions, is unable to capture Anderson localization, as well as other
imporant disorder effects such as the formation of inhomogeneous or glassy phases.
Recent efforts, however, have resulted in various extensions of DMFT, which have
succeeded to incorporate various aspects of such disorder-driven phenomena, as follows.
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• “Statistical DMFT” theories (Dobrosavljević and Kotliar, 1997) which calculate
the local site-dependent self-energies for a given fixed realization of disorder. Here
the strong correlation effects are described in DMFT fashion, while disorder fluc-
tuations are treated in an exact numerical approach. In a sense, this method can be
regarded as a quantum generalization of the “TAP equation” (Thouless, Anderson
and Palmer, 1977) approach to classical spin glasses. In applicatio to disordered
Huibbard and Anderson lattrice models, it led to the discovery of disorder-driven
non-Fermi liquid behavior (Miranda and Dobrosavljevic, 2005) and “Electronic
Griffiths phases” (Miranda and Dobrosavljević, 2001; Tanasković, Miranda and
Dobrosavljević, 2004; Andrade, Miranda and Dobrosavljevic, 2009).

• “Typical-Medium Theories” (Dobrosavljević, Pastor and Nikolić, 2003a) which
treat both the interactions and disorder fluctuations in a DMFT-like self-consistent
fashion. This method is the simplest order-parameter theory of Mott-Anderson
localization.

• “Exteded DMFT (EDMFT)” theories discribing the effect of the bosonic collec-
tive modes due to inter-site interactions. The EDMFT approach, which was much
utilized in recent work on quantum criticality in Kondo systems (Smith and Si,
2000), also proved very effective in describing quantum spin glass (Sachdev, Read
and Oppermann, 1995), and especially in describing the effects of the long-ranged
Coulomb interaction (Chitra and Kotliar, 2000). It provided a quantitatively ac-
curate description of the pseudogap phenomena in Coulomb systems (Pankov
and Dobrosavljević, 2005), and clarified the relation between glassy freezing and
formation (Pastor and Dobrosavljević, 1999) of the universal Efros-Shklovskii
Coulomb gap in presence of disorder.

1.3.4 Conclusions and outlook

Recent years have seen considerable progres in finding fascinating but often baffling
examples of materials that seem to belong to the metal-insulator transition region. In
many of these examples, the electron localization does not appear to have a conven-
tional “band transition” character, where some kind of uniform ordering leads to a
band gap opening at the Fermi surface. Instead, mechanisms such as Mott and Ader-
son localization are invoqued, processes that simply do not fit the cherished mold
of spontaneous symmtry breaking. Neverthless, in systems ranging from heavy doped
semiconductors, dilute two-dimensional electron gases, to organic charge-transfer salts,
to cuprate-oxide and iron-pnictide materials, the metal-insualtor transition region typ-
ically assumes the form expected of quantum criticality.

The traditional approaches to the metal-insulator transition, dating to the 1980s,
tried to circumvent the absence of an obvious order-parameter description by system-
atically examining the stability of the metallic (Fermi liquid) phase to weak disorder.
This approach, despite its formal elegance and conceptual simplicity, did not find many
convincing applications, most likely because its inherent inability to describe genuine
strong correlation effects - the role of “Mottness”. Indeed, much of the efforts of the
theoretical condensed matter community over the last twenty years has focused on the
Mott physics in its many forms.
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One central physics question has emerged from all these studies. This issue, first
emphasized in the pioneering works of Mott and Anderson, relates to what are the rel-
evant length-scales that dominate the “bad-metal” regime. The perspective provided
by the Fermi liquid picture of metals and the symmetry breaking paradigm of con-
ventional criticality both suggest that long lengthscales should hold the key. However,
as hinted by the title of Phillip Anderson’s 1978 Nobel Prize lecture “Local Moments
and Localized States” (Anderson, 1978), sufficiently close to insulating states, the
real-space representation may offer a better starting point.

Over the last twenty years, these local ideas acquired a precise and systematic lan-
guage with the rise of DMFT approaches. This provided a natural dynamical order-
parameter description for strongly correlated systems with and without disorder. The
progress made by the various forms and extensions of DMFT is very encouraging, since
they proved capable of incorporating all the basic mechanisms for electron localization.
Many of these phenomena, such as the emergence of strongly inhomogneous phases,
or the description of glassy dynamics, proved to be beyond the scope of conventional
Fermi-liqui based theories of interaction-localization. In all fairness, though, the prob-
lem remains remains far from being resolved, and much more focused effort will be
neccessary to combine all the facets of these fasciating theories in a comprehensive
and well established picture of the metal-insulator transition region.
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Dobrosavljević, V., Tanasković, D., and Pastor, A. A. (2003b). Phys. Rev. Lett., 90,
016402.

Efros, A. L. and Shklovskii, B. I. (1975). J. Phys. C , 8, L49.
Finkel’stein, A. M. (1983). Zh. Eksp. Teor. Fiz., 84, 168. [Sov. Phys. JETP 57, 97
(1983)].

Finkel’stein, A. M. (1984). Zh. Eksp. Teor. Fiz., 86, 367. [Sov. Phys. JETP 59, 212
(1983)].

Fisher, Daniel S. (1985, Jun). Phys. Rev. B , 31(11), 7233–7251.
Fisk, Z. and Webb, G. W. (1976, May). Phys. Rev. Lett., 36(18), 1084–1086.
Flouquet, J. (2005). Volume 15, Progress in Low Temperature Physics, pp. 139 –
281. Elsevier.

Georges, A., Kotliar, G., Krauth, W., and Rozenberg, M. J. (1996). Rev. Mod.
Phys., 68, 13.

Goldenfeld, N. (1992). Lectures on phase transitions and the renormalization group.
Addison-Wesley, Reading.

Gor’kov, L. P. and Sokol, A. V. (1987). JETP Lett., 46, 420.
Grannan, Eric R. and Yu, Clare C. (1993, Nov). Phys. Rev. Lett., 71(20), 3335–3338.
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Miranda, E. and Dobrosavljević, V. (2001). Phys. Rev. Lett., 86, 264.
Miranda, E. and Dobrosavljevic, V. (2005). Reports on Progress in Physics, 68, 2337.
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